A laboratory study was conducted to evaluate 11 vehicular cabin filters (including electrostatic filters) in removing fine particles. Two filters with charcoal were also evaluated to understand their usefulness in removing five common volatile organic compounds, including benzene, toluene, ethylbenzene, and xylene isomers (BTEX). Filters were found to show considerably different particle filtration efficiencies (FE). Electrostatic filters were found to provide 20–60% better FE across all particle diameters (6–520 nm). For 6 nm particles, FE from 78 to 94% were observed (from the worst to the best filters), while at 520 nm, FE varied from 35 to 60%. The best group of filters provided 44–46% FE for capturing the most penetrating particles (100–300 nm), while the worst group of filters provided only 10–11% FE. The filtration behavior of nominal filters was typically stable (with respect to particle number, black carbon, and particulate matter mass) over the course of 1–2 years of usage. The benefits of the electrostatic filters were significant, but such advantages were observed to gradually dissipate over the course of about 1 year; by then, the electrostatic filter becomes no different compared to a nominal filter in terms of filtration behavior. Charcoal filters showed variabilities in removing BTEX, and removal efficiencies varied from 11 to 41%.