gamma knife perfexion
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 91 (3) ◽  
pp. 33-45
Author(s):  
I. Paddick ◽  
A. Cameron ◽  
A. Dimitriadis

Background. To measure extracranial doses from Gamma Knife Perfexion (GKP) intracranial stereotactic radiosurgery (SRS) and model the risk of malignancy after SRS for different treatment platforms. Methods. Doses were measured for 20 patients undergoing SRS on a GKP at distances of 18, 43 and 75 cm from the target, corresponding to the approximate positions of the thyroid, breast and gonads respectively. The National Cancer Institute (NCI) RadRAT calculator was used to estimate excess lifetime cancer risk from this exposure. Five different age groups covering childhood and younger adults were modelled for both sexes. Results. Extracranial doses delivered during SRS with the GKP were a median 0.04 %, 0.008 % and 0.002 % of prescription dose at 18 cm, 43 cm and 70 cm from the isocentre respectively. Comparison with the literature revealed that the extracranial dose was lowest from GKP, then linacs equipped with micro-multileaf collimators (mMLC), then linacs equipped with circular collimators (cones), and highest from Cyberknife (CK). Estimated lifetime risks of radiation-induced malignancy in the body for patients treated with SRS aged 5–45 years were 0.03 0.88 %, 0.36–11 %, 0.61–18 % and 2.2–39 % for GKP, mMLC, cones and CK respectively. Conclusions. We have compared typical extracranial doses from different platforms and quantified the lifetime risk of radiation-induced malignancy. The risk varies with platform. This should be taken into account when treating children and young adults with SRS. The concept of a therapeutic reference level (TRL), similar to the diagnostic reference level (DRL) established in radiology, is proposed.


2021 ◽  
Vol 64 (1) ◽  
pp. 13-22
Author(s):  
Beong Ik Hur ◽  
Seong Jin Jin ◽  
Gyeong Rip Kim ◽  
Jong Hyeok Kwak ◽  
Young Ha Kim ◽  
...  

Author(s):  
Ian Paddick ◽  
A. Cameron ◽  
A. Dimitriadis

Abstract Background To measure extracranial doses from Gamma Knife Perfexion (GKP) intracranial stereotactic radiosurgery (SRS) and model the risk of malignancy after SRS for different treatment platforms. Methods Doses were measured for 20 patients undergoing SRS on a GKP at distances of 18, 43 and 75 cm from the target, corresponding to the approximate positions of the thyroid, breast and gonads respectively. A literature review was conducted to collect comparative data from other radiosurgery platforms. All data was used to calculate the dose to body organs. The National Cancer Institute (NCI) RadRAT calculator was used to estimate excess lifetime cancer risk from this exposure. Five different age groups covering childhood and younger adults were modelled for both sexes. Results Extracranial doses delivered during SRS with the GKP were a median 0.04%, 0.008% and 0.002% of prescription dose at 18 cm, 43 cm and 70 cm from the isocentre respectively. Comparison with the literature revealed that the extracranial dose was lowest from GKP, then linacs equipped with micro-multileaf collimators (mMLC), then linacs equipped with circular collimators (cones), and highest from Cyberknife (CK). Estimated lifetime risks of radiation-induced malignancy in the body for patients treated with SRS aged 5–45 years were 0.03–0.88%, 0.36–11%, 0.61–18% and 2.2–39% for GKP, mMLC, cones and CK respectively. Conclusions We have compared typical extracranial doses from different platforms and quantified the lifetime risk of radiation-induced malignancy. The risk varies with platform. This should be taken into account when treating children and young adults with SRS. The concept of a therapeutic reference level (TRL), similar to the diagnostic reference level (DRL) established in radiology, is proposed.


2020 ◽  
Vol 13 (4) ◽  
pp. 398-404
Author(s):  
J. Junios ◽  
I. Irhas ◽  
N. Novitrian ◽  
E. Soediatmoko ◽  
F. Haryanto ◽  
...  

2020 ◽  
Vol 52 (10) ◽  
pp. 2334-2338
Author(s):  
Sangmin Lee ◽  
Tae Hoon Kim ◽  
Jae Young Jeong ◽  
Jaebum Son ◽  
Dong Geon Kim ◽  
...  

2020 ◽  
Vol 1528 ◽  
pp. 012028
Author(s):  
I N Pranditayana ◽  
A R. Setiadi ◽  
M M Ramadhan ◽  
D Tandian ◽  
S A. Pawiro

2020 ◽  
Vol 65 (1) ◽  
pp. 54-58
Author(s):  
T. Medjadj ◽  
A. Ksenofontov ◽  
A. Dalechina

Purpose: To develop an effective method of Monte Carlo simulation of the GammaKnife Perfexion system by rotating particles in the phase space file (PSF). This method does not require simulating of all 192 sources that are distributed in the conical form of the Perfexion collimator. The simulation was performed only for 5 out of 192 sources for each collimator size. Material and methods: Monte Carlo simulation of dose distribution for previous models of GammaKnife system requires phase space file for only one source, since this phase space is identical for all the 201 sources. The Perfexion model is more complex due to the non-coaxial positions of the sources and the complexity of the collimator system itself. In this work, we present an effective method to simulate the Perfexion model using a phase space file. Penelope Monte Carlo code was used to perform this simulation. In this method, the PSF was obtained for one source in each ring, resulting in five files for each collimator size. PSF for other sources were created by azimuthal redistribution of particles, in the obtained PSF, by rotation around the Z-axis. The phase space files of the same ring were then stored together in a single file. Results: The paper presented MC simulation using the azimuthal redistribution of particles in the phase space file by rotation around the Z-axis. The simulation has been validated comparing the dose profiles and output factors with the data of the algorithm TMR10 planning system Leksell Gamma Plan (LGP) in a homogeneous environment. The acceptance criterion between TMR10 and Monte Carlo calculations for the profiles was based on the gamma index (GI). Index values more than one were not detected in all cases, which indicates a good agreement of results. The differences between the output factors obtained in this work and the TMR10 data for collimators 8 mm and 4 mm are 0.74 and 0.73 %, respectively. Conclusion: In this work successfully implemented an effective method of simulating the Leksell Gamma knife Perfexion system. The presented method does not require modeling for all 192 sources distributed in the conical form of the Perfexion collimator. The simulation was performed for only five sources for each collimator and their files PSF were obtained. These files were used to create the PSF files for other sources by azimuthal redistribution of particles, in these files, by rotation around the Z-axis providing correct calculations of dose distributions in a homogeneous medium for 16, 8 and 4 mm collimators.


Sign in / Sign up

Export Citation Format

Share Document