multileaf collimators
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 7)

H-INDEX

22
(FIVE YEARS 0)

2021 ◽  
Vol 91 (3) ◽  
pp. 33-45
Author(s):  
I. Paddick ◽  
A. Cameron ◽  
A. Dimitriadis

Background. To measure extracranial doses from Gamma Knife Perfexion (GKP) intracranial stereotactic radiosurgery (SRS) and model the risk of malignancy after SRS for different treatment platforms. Methods. Doses were measured for 20 patients undergoing SRS on a GKP at distances of 18, 43 and 75 cm from the target, corresponding to the approximate positions of the thyroid, breast and gonads respectively. The National Cancer Institute (NCI) RadRAT calculator was used to estimate excess lifetime cancer risk from this exposure. Five different age groups covering childhood and younger adults were modelled for both sexes. Results. Extracranial doses delivered during SRS with the GKP were a median 0.04 %, 0.008 % and 0.002 % of prescription dose at 18 cm, 43 cm and 70 cm from the isocentre respectively. Comparison with the literature revealed that the extracranial dose was lowest from GKP, then linacs equipped with micro-multileaf collimators (mMLC), then linacs equipped with circular collimators (cones), and highest from Cyberknife (CK). Estimated lifetime risks of radiation-induced malignancy in the body for patients treated with SRS aged 5–45 years were 0.03 0.88 %, 0.36–11 %, 0.61–18 % and 2.2–39 % for GKP, mMLC, cones and CK respectively. Conclusions. We have compared typical extracranial doses from different platforms and quantified the lifetime risk of radiation-induced malignancy. The risk varies with platform. This should be taken into account when treating children and young adults with SRS. The concept of a therapeutic reference level (TRL), similar to the diagnostic reference level (DRL) established in radiology, is proposed.


Author(s):  
Lucie Calmels ◽  
Susan Blak Nyrup Biancardo ◽  
Patrik Sibolt ◽  
Susanne Nørring Bekke ◽  
Ulf Bjelkengren ◽  
...  

Abstract Purpose The purpose of this study was to evaluate our 2 years’ experience with single-isocenter, non-coplanar, volumetric modulated arc therapy (VMAT) for brain metastasis (BM) stereotactic radiosurgery (SRS). Methods A total of 202 patients treated with the VMAT SRS solution were analyzed retrospectively. Plan quality was assessed for 5 mm (120) and 2.5 mm (high-definition, HD) central leaf width multileaf collimators (MLCs). For BMs at varying distances from the plan isocenter, the geometric offset from the ideal position for two image-guided radiotherapy workflows was calculated. In the workflow with ExacTrac (BrainLAB, München, Germany; W‑ET), patient positioning errors were corrected at each couch rotation. In the workflow without ExacTrac (W-noET), only the initial patient setup correction was considered. The dose variation due to rotational errors was simulated for multiple-BM plans with the HD-MLC. Results Plan conformity and quality assurance were equivalent for plans delivered with the two MLCs while the HD-MLC plans provided better healthy brain tissue (BmP) sparing. 95% of the BMs had residual intrafractional setup errors ≤ 2 mm for W‑ET and 68% for W‑noET. For small BM (≤1 cc) situated >3 cm from the plan isocenter, the dose received by 95% of the BM decreased in median (interquartile range) by 6.3% (2.8–8.8%) for a 1-degree rotational error. Conclusion This study indicates that the HD-MLC is advantageous compared to the 120-MLC for sparing healthy brain tissue. When a 2-mm margin is applied, W‑noET is sufficient to ensure coverage of BM situated ≤ 3 cm of the plan isocenter, while for BM further away, W‑ET is recommended.


2021 ◽  
Vol 8 (1) ◽  
pp. 73-83
Author(s):  
Daniel E. Hyer ◽  
Laura C. Bennett ◽  
Theodore J. Geoghegan ◽  
Martin Bues ◽  
Blake R. Smith

Abstract Purpose The development of collimating technologies has become a recent focus in pencil beam scanning (PBS) proton therapy to improve the target conformity and healthy tissue sparing through field-specific or energy-layer–specific collimation. Given the growing popularity of collimators for low-energy treatments, the purpose of this work was to summarize the recent literature that has focused on the efficacy of collimators for PBS and highlight the development of clinical and preclinical collimators. Materials and Methods The collimators presented in this work were organized into 3 categories: per-field apertures, multileaf collimators (MLCs), and sliding-bar collimators. For each case, the system design and planning methodologies are summarized and intercompared from their existing literature. Energy-specific collimation is still a new paradigm in PBS and the 2 specific collimators tailored toward PBS are presented including the dynamic collimation system (DCS) and the Mevion Adaptive Aperture. Results Collimation during PBS can improve the target conformity and associated healthy tissue and critical structure avoidance. Between energy-specific collimators and static apertures, static apertures have the poorest dose conformity owing to collimating only the largest projection of a target in the beam's eye view but still provide an improvement over uncollimated treatments. While an external collimator increases secondary neutron production, the benefit of collimating the primary beam appears to outweigh the risk. The greatest benefit has been observed for low- energy treatment sites. Conclusion The consensus from current literature supports the use of external collimators in PBS under certain conditions, namely low-energy treatments or where the nominal spot size is large. While many recent studies paint a supportive picture, it is also important to understand the limitations of collimation in PBS that are specific to each collimator type. The emergence and paradigm of energy-specific collimation holds many promises for PBS proton therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dong Soo Lee ◽  
Young Kyu Lee ◽  
Young Nam Kang ◽  
Yong Gyun Won ◽  
Seung Hwan Park ◽  
...  

AbstractThe three-dimensional field-in-field (3-D FIF) technique for radiotherapy is an advanced, state-of-the-art method that uses multileaf collimators to generate a homogeneous and conformal dose distribution via segmental subfields. The purpose of this study is to evaluate the dosimetric reproducibility of 3-D FIF plans using the original simulation computed tomography (iCT) scans and re-simulation CT (rCT) scans for whole breast irradiation (WBI) schedule. This study enrolled a total of 34 patients. The study population underwent iCT scans for standard WBI and took rCT scans after 45 Gy of WBI for cone down boost plans. The dosimetric parameters (V105%, V103%, V100%, V98%, V95%, V90%, V50%), plan quality indices (conformity index, homogeneity index) and clinical parameters (isocenter-breast axis, isocenter-lung axis, soft tissue volumes within radiation field, lung volumes within radiation field) were assessed. The median time interval from surgery to iCT was 33 days and from iCT to rCT was 35 days. All dosimetric parameters exhibited statistically significant differences between iCT and rCT among cohorts with a surgery-iCT interval of < 60 days. Homogeneity index showed a statistically significant increase from iCT to rCT among all cohorts. Soft tissue volumes (p = 0.001) and isocenter-breast axis (p = 0.032) exhibited statistically significant differences among cohorts with surgery-iCT interval < 60 days. Regarding the reproducibility of the 3-D FIF WBI plans, significant changes were observed in dosimetric and clinical factors, particularly in study cohorts with a surgery-simulation interval < 60 days. The main contributing factor of these transitions seemed to be the changes in volume of the soft tissue within the WBI field. Further confirmative studies are necessary to determine the most suitable timing and technique for WBI.


Author(s):  
Ian Paddick ◽  
A. Cameron ◽  
A. Dimitriadis

Abstract Background To measure extracranial doses from Gamma Knife Perfexion (GKP) intracranial stereotactic radiosurgery (SRS) and model the risk of malignancy after SRS for different treatment platforms. Methods Doses were measured for 20 patients undergoing SRS on a GKP at distances of 18, 43 and 75 cm from the target, corresponding to the approximate positions of the thyroid, breast and gonads respectively. A literature review was conducted to collect comparative data from other radiosurgery platforms. All data was used to calculate the dose to body organs. The National Cancer Institute (NCI) RadRAT calculator was used to estimate excess lifetime cancer risk from this exposure. Five different age groups covering childhood and younger adults were modelled for both sexes. Results Extracranial doses delivered during SRS with the GKP were a median 0.04%, 0.008% and 0.002% of prescription dose at 18 cm, 43 cm and 70 cm from the isocentre respectively. Comparison with the literature revealed that the extracranial dose was lowest from GKP, then linacs equipped with micro-multileaf collimators (mMLC), then linacs equipped with circular collimators (cones), and highest from Cyberknife (CK). Estimated lifetime risks of radiation-induced malignancy in the body for patients treated with SRS aged 5–45 years were 0.03–0.88%, 0.36–11%, 0.61–18% and 2.2–39% for GKP, mMLC, cones and CK respectively. Conclusions We have compared typical extracranial doses from different platforms and quantified the lifetime risk of radiation-induced malignancy. The risk varies with platform. This should be taken into account when treating children and young adults with SRS. The concept of a therapeutic reference level (TRL), similar to the diagnostic reference level (DRL) established in radiology, is proposed.


2020 ◽  
Vol 45 (4) ◽  
pp. 215
Author(s):  
AkulaRoopa Rani ◽  
Komanduri Ayyangar ◽  
AR Reddy ◽  
AyyalasomayajulaAnil Kumar ◽  
PalReddy Yadagiri Reddy

2018 ◽  
Vol 63 (20) ◽  
pp. 205018 ◽  
Author(s):  
Yuichi Akino ◽  
Hirokazu Mizuno ◽  
Yoshihiro Tanaka ◽  
Masaru Isono ◽  
Norihisa Masai ◽  
...  

2018 ◽  
Vol 6 (2) ◽  
Author(s):  
Alex Cristóvão Holanda de Oliveira ◽  
José Wilson Vieira ◽  
Miriam Zarza Moreno ◽  
Fernando Roberto Andrade Lima

Author(s):  
K Hadad ◽  
H Alipour

Background: Recently, multileaf collimators (MLC) have become an important part of any LINAC collimation system because they reduce the treatment planning time and improve the conformity. Important factors that affect MLCs collimation performance are leaves material composition and their thickness.Materials and Methods: In this study, we investigate main dosimetric parameters of a typical MLC including dose in the buildup point, physical penumbra as well as average and end leaf leakages. Effects of the leaves geometry and density on these parameters are evaluated. Calculations were performed by using phase space data for Varian ix just above MLC and BEAMnrc/DOSXYZnrc for SSD=100cm and in a water phantom.Results: Based on the results, a new MLC with improved dosimetric parameters is proposed. The physical penumbra for proposed MLC is 4.7mm was compared to 5.16 mm for Millennium 120 leaf. Average leakage in our design is reduced to 1.16% compared to 1.73% for Millennium 120 leaf, the end leaf leakage suggested design also reduced to 4.86% compared to 7.26% for Millennium 120 leaf.Conclusion: The results show that the proposed MLC could improve the dosimetric parameters and conformity of treatment planning.


Sign in / Sign up

Export Citation Format

Share Document