Rhabdoviridae is the most diverse family of the negative, single-stranded RNA viruses, which includes 40 ecologically different genera that infect plants, insects, reptiles, fishes, and mammals, including humans, and birds. To date, only a few bird-related rhabdoviruses among the genera Sunrhavirus, Hapavirus, and Tupavirus have been described and analyzed at the molecular level. In this study, we characterized seven additional and previously unclassified rhabdoviruses, which were isolated from various bird species collected in Africa during the 1960s and 1970s. Based on the analysis of their genome sequences obtained by next generation sequencing, we observed a classical genomic structure, with the presence of the five canonical rhabdovirus genes, i.e., nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and polymerase (L). In addition, different additional open reading frames which code putative proteins of unknown function were identified, with the common presence of the C and the SH proteins, within the P gene and between the M and G genes, respectively. Genetic comparisons and phylogenetic analysis demonstrated that these seven bird-related rhabdoviruses could be considered as putative new species within the genus Sunrhavirus, where they clustered into a single group (named Clade III), a companion to two other groups that encompass mainly insect-related viruses. The results of this study shed light on the high diversity of the rhabdoviruses circulating in birds, mainly in Africa. Their close relationship with other insect-related sunrhaviruses raise questions about their potential role and impact as arboviruses that affect bird communities.