kahler geometry
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 46)

H-INDEX

26
(FIVE YEARS 2)

2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Erik Khastyan ◽  
Sergey Krivonos ◽  
Armen Nersessian
Keyword(s):  

Author(s):  
Maciej Dunajski

AbstractWe construct the normal forms of null-Kähler metrics: pseudo-Riemannian metrics admitting a compatible parallel nilpotent endomorphism of the tangent bundle. Such metrics are examples of non-Riemannian holonomy reduction, and (in the complexified setting) appear on the space of Bridgeland stability conditions on a Calabi–Yau threefold. Using twistor methods we show that, in dimension four—where there is a connection with dispersionless integrability—the cohomogeneity-one anti-self-dual null-Kähler metrics are generically characterised by solutions to Painlevé I or Painlevé II ODEs.


Author(s):  
Oscar Ocampo

Let [Formula: see text]. In this paper, we show that for any abelian subgroup [Formula: see text] of [Formula: see text] the crystallographic group [Formula: see text] has Bieberbach subgroups [Formula: see text] with holonomy group [Formula: see text]. Using this approach, we obtain an explicit description of the holonomy representation of the Bieberbach group [Formula: see text]. As an application, when the holonomy group is cyclic of odd order, we study the holonomy representation of [Formula: see text] and determine the existence of Anosov diffeomorphisms and Kähler geometry of the flat manifold [Formula: see text] with fundamental group the Bieberbach group [Formula: see text].


2021 ◽  
pp. 1-26
Author(s):  
Leila Nourmohammadifar ◽  
Esmaeil Peyghan
Keyword(s):  

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Sergio Cecotti

Abstract The purpose of this paper is two-fold. First we review in detail the geometric aspects of the swampland program for supersymmetric 4d effective theories using a new and unifying language we dub “domestic geometry”, the generalization of special Kähler geometry which does not require the underlying manifold to be Kähler or have a complex structure. All 4d SUGRAs are described by domestic geometry. As special Kähler geometries, domestic geometries carry formal brane amplitudes: when the domestic geometry describes the supersymmetric low-energy limit of a consistent quantum theory of gravity, its formal brane amplitudes have the right properties to be actual branes. The main datum of the domestic geometry of a 4d SUGRA is its gauge coupling, seen as a map from a manifold which satisfies the geometric Ooguri-Vafa conjectures to the Siegel variety; to understand the properties of the quantum-consistent gauge couplings we discuss several novel aspects of such “Ooguri-Vafa” manifolds, including their Liouville properties.Our second goal is to present some novel speculation on the extension of the swampland program to non-supersymmetric effective theories of gravity. The idea is that the domestic geometric description of the quantum-consistent effective theories extends, possibly with some qualifications, also to the non-supersymmetric case.


Sign in / Sign up

Export Citation Format

Share Document