calcium aluminate cement
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 107)

H-INDEX

29
(FIVE YEARS 6)

2022 ◽  
Vol 8 ◽  
Author(s):  
Wu Zhiqiang ◽  
Liu Hengjie ◽  
Qu Xiong ◽  
Wu Guangai ◽  
Xing Xuesong ◽  
...  

During the thermal recovery of heavy oil thermal recovery wells, improving the mechanical properties and integrity of the cement ring is of great significance for the safe and efficient exploitation of heavy oil resources. This paper studies the relative properties of calcium aluminate cement and three kinds of slags under the conditions of 50°C × 1.01 MPa and 315°C × 20.7 MPa. CAC-slag composite material performance was evaluated using the cement paste compressive strength and permeability tests to study the physical properties of CAC with blast furnace slag. X-ray diffraction analysis, scanning electron microscopy (SEM), and thermal analysis (DSC/TG) were carried out to investigate the mineralogical composition of CAC with blast furnace slag. Results show that adding blast furnace slag did not affect the performance of cement slurry. Moreover, C2ASH8 curing occurred at low temperature, the microstructure of CAC paste was compact, and the permeability resistance was improved, thus improving the low-temperature properties of neat CAC. When cured at a high temperature, the CAC paste was mainly hydrated with C3ASH4 and AlO(OH), which had a well-developed crystal structure. Adding blast furnace slag can improve the CAC resistance to high temperature.


Author(s):  
Saghar Baghban ◽  
Kim Hung Mo ◽  
Zainah Ibrahim ◽  
Mohammed KH Radwan ◽  
Syed Nasir Shah

This paper aims to study the influence of basalt fiber (BF) and polypropylene fiber (PPF) in crumb rubber (CR) mortar made of two different types of cement, including ordinary Portland cement (OPC) and calcium aluminate cement (CAC). CR was used to partially (5%, 10%, 15%, and 20% by volume) replace the fine aggregate in OPC and CAC mortars. BF and PPF were added (0.1%, 0.3%, and 0.5% by total volume) in the CR mortars. The consistency, density, compressive, and flexural strength of cement mortars were investigated. The use of CAC cement slightly increased the consistency; however, the results showed that the CR replacement and the addition of both fiber types tend to reduce the consistency in OPC and CAC mortars. Significant reduction in the density of fiber-added CR mortar was found with increasing CR content, whereas the influence of both PPF and BF was minimal. The fiber-added CR mortar made of both binder and fiber types in general exhibited a reducing trend in the 28 days compressive strength when increasing CR and fiber contents. Nevertheless, an enhancement in the compressive strength of CAC mortar with 20% CR was found with the addition of 0.1% of both fibers. The use of CR and addition of the fibers generally decreased the flexural strength of mortar made of both binder types; however, the addition of 0.3% BF in mortars containing 15–20% CR positively affected the flexural performance. Finally, the artificial neural network (ANN) approach demonstrated the ability to predict the compressive strength of fiber-added CR mortars. The model showed a considerably insignificant mean square error (MSE) of 1.4–1.5 and high plot regression (R) results of 0.97–0.98.


2021 ◽  
pp. 1-29
Author(s):  
Sanghamitra Bharati ◽  
Manjini Sambandam ◽  
Pankaj Lochan

Strict environmental norms and raising concern to recycle solid wastes generated during ironmaking and steelmaking processes has been the key driving force in developing various technologies. The present study describes a calcium-aluminate clinker prepared from steel ladle slag by modifying its mineral compositions. The slag paste prepared by mixing with water exhibited flash setting behaviour due to the presence of C12A7 and C3A phases. In contrast, the slag clinker, developed by sintering a mixture of pre-determined quantity of slag and Al2O3 at 1400°C for 2h and 4h, contained CA, CA2, Gehlenite and ‘Q’ phases. Hydration of slag clinker contained stable C3AH6, AH3 and stratlingite with preferential growth of calcium-aluminate hydrate prisms along c-axis that provided a well-defined raceme like morphology with interlinked structure. It improved the setting time and crushing strength of the clinkers after 6h and 24h curing at room temperature. Additionally, presence of ‘Q’ phase with lamellar prismatic crystals also helped in enhancing the strength. The developed clinker also exhibited superior crushing strength as compared to commercially available calcium aluminate cement of medium purity. The slag, used as a source of CaO could replace CaCO3 completely and thus contributed to reduction in CO2 emission during clinker making process.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7333
Author(s):  
Solmoi Park ◽  
Namkon Lee ◽  
Gi-Hong An ◽  
Kyeong-Taek Koh ◽  
Gum-Sung Ryu

The use of alternative cementitious binders is necessary for producing sustainable concrete. Herein, we study the effect of using alternative cementitious binders in ultra-high-performance concrete (UPHC) by calculating the phase assemblages of UHPC in which Portland cement is replaced with calcium aluminate cement, calcium sulfoaluminate cement, metakaolin or blast furnace slag. The calculation result shows that replacing Portland cement with calcium aluminate cement or calcium sulfoaluminate cement reduces the volume of C-S-H but increases the overall solid volume due to the formation of other phases, such as strätlingite or ettringite. The modeling result predicts that using calcium aluminate cement or calcium sulfoaluminate cement may require more water than it would for plain UHPC, while a similar or lower amount of water is needed for chemical reactions when using blast furnace slag or metakaolin.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6590
Author(s):  
Tengteng Xu ◽  
Yibiao Xu ◽  
Ning Liao ◽  
Yawei Li ◽  
Mithun Nath

Al2O3-CaO-Cr2O3 castables are used in various furnaces due to excellent corrosion resistance and sufficient early strength, but toxic Cr(VI) generation during service remains a concern. Here, we investigated the relative reactivity of analogous Cr(III) phases such as Cr2O3, (Al1-xCrx)2O3 and in situ Cr(III) solid solution with the calcium aluminate cement under an oxidizing atmosphere at various temperatures. The aim is to comprehend the relative Cr(VI) generation in the low-cement castables (Al2O3-CaO-Cr2O3-O2 system) and achieve an environment-friendly application. The solid-state reactions and Cr(VI) formation were investigated using powder XRD, SEM, and leaching tests. Compared to Cr2O3, the stability of (Al1-xCrx)2O3 against CAC was much higher, which improved gradually with the concentration of Al2O3 in (Al1-xCrx)2O3. The substitution of Cr2O3 with (Al1-xCrx)2O3 in the Al2O3-CaO-Cr2O3 castables could completely inhibit the formation of Cr(VI) compound CaCrO4 at 500–1100 °C and could drastically suppress Ca4Al6CrO16 generation at 900 to 1300 °C. The Cr(VI) reduction amounting up to 98.1% could be achieved by replacing Cr2O3 with (Al1-xCrx)2O3 solid solution. However, in situ stabilized Cr(III) phases as a mixture of (Al1-xCrx)2O3 and Ca(Al12-xCrx)O19 solid solution hardly reveal any reoxidation. Moreover, the CA6 was much more stable than CA and CA2, and it did not participate in any chemical reaction with (Al1-xCrx)2O3 solid solution.


Sign in / Sign up

Export Citation Format

Share Document