islet dysfunction
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 31)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Xinzhu Liu ◽  
Zhaoxing Liu ◽  
Dawei Li ◽  
Yuezeng Niu ◽  
Wen Zhang ◽  
...  

2021 ◽  
Vol 177 ◽  
pp. S88-S89
Author(s):  
Inga Sileikaite ◽  
Michael J. Davies ◽  
Thomas Mandrup-Poulsen ◽  
Clare L. Hawkins

2021 ◽  
Author(s):  
Alejandro Tamayo ◽  
Luciana Mateus Goncalves ◽  
Rayner Rodriguez-Diaz ◽  
Elizabeth Pereira ◽  
Melissa Canales ◽  
...  

The pancreatic islet depends on blood supply to efficiently sense plasma glucose levels and deliver insulin and glucagon into the circulation. Long thought to be passive conduits of nutrients and hormones, islet capillaries were recently found to be densely covered with contractile pericytes, suggesting local control of blood flow. Here we determined the contribution of islet pericytes to the regulation of islet blood flow, plasma insulin and glucagon levels, and glycemia. Selective optogenetic activation of pericytes in intraocular islet grafts contracted capillaries and diminished blood flow. In awake mice, acute clamping of islet blood flow by optogenetic or pharmacological activation of pericytes disrupted hormonal responses, glycemia, and glucose tolerance. Our findings indicate that pericytes mediate vascular responses in the islet that are required for adequate hormone secretion and glucose homeostasis. Vascular deficiencies commonly seen in the islets of people with type 2 diabetes may impair regulation of islet blood flow and thus precipitate islet dysfunction.


2021 ◽  
Vol 8 ◽  
Author(s):  
Liqin Lu ◽  
Lili Zhuang ◽  
Ximei Shen ◽  
Liyong Yang

Background: Islet dysfunction is the main pathological process of type 2 diabetes mellitus (T2DM). Fibrosis causes islet dysfunction, but the current mechanism is still unclear. Here, bioinformatics analysis identified gene clusters closely related to T2DM and differentially expressed genes related to fibrosis, and animal models verified the roles of these genes.Methods: Human islet transcriptomic datasets were obtained from the Gene Expression Omnibus (GEO), and weighted gene coexpression network analysis (WGCNA) was applied to screen the key gene modules related to T2DM and analyze the correlations between the modules and clinical characteristics. Enrichment analysis was performed to identify the functions and pathways of the key module genes. WGCNA, protein-protein interaction (PPI) analysis and receiver operating characteristic (ROC) curve analysis were used to screen the hub genes. The hub genes were verified in another GEO dataset, the islets of high-fat diet (HFD)-fed Sprague-Dawley rats were observed by H&E and Masson’s trichrome staining, the fibrotic proteins were verified by immunofluorescence, and the hub genes were tested by immunohistochemistry.Results: The top 5,000 genes were selected according to the median absolute deviation, and 18 modules were analyzed. The yellow module was highly associated with T2DM, and its positive correlation with glycated hemoglobin (HbA1c) was significantly stronger than that with body mass index (BMI). Enrichment analysis revealed that extracellular matrix organization, the collagen-containing extracellular matrix and cytokine−cytokine receptor interaction might influence T2DM progression. The top three hub genes, interleukin 6 (IL6), IL11 and prostaglandin-endoperoxide synthase 2 (PTGS2), showed upregulated expression in T2DM. In the validation dataset, IL6, IL11, and PTGS2 levels were upregulated in T2DM, and IL6 and PTGS2 expression was positively correlated with HbA1c and BMI; however, IL11 was positively correlated only with HbA1c. In HFD-fed Sprague-Dawley rats, the positive of IL6 and IL11 in islets was stronger, but PTGS2 expression was not significantly altered. The extent of fibrosis, irregular cellular arrangement and positive actin alpha 2 (ACTA2) staining in islets was significantly greater in HFD-fed rats than in normal diet-fed rats.Conclusion: Glucotoxicity is a major factor leading to increased IL6 and IL11 expression, and IL6-and IL11-induced fibrosis might be involved in islet dysfunction.


2021 ◽  
Vol 22 (16) ◽  
pp. 8597
Author(s):  
Ilka Wilhelmi ◽  
Alexander Neumann ◽  
Markus Jähnert ◽  
Meriem Ouni ◽  
Annette Schürmann

Dysfunctional islets of Langerhans are a hallmark of type 2 diabetes (T2D). We hypothesize that differences in islet gene expression alternative splicing which can contribute to altered protein function also participate in islet dysfunction. RNA sequencing (RNAseq) data from islets of obese diabetes-resistant and diabetes-susceptible mice were analyzed for alternative splicing and its putative genetic and epigenetic modulators. We focused on the expression levels of chromatin modifiers and SNPs in regulatory sequences. We identified alternative splicing events in islets of diabetes-susceptible mice amongst others in genes linked to insulin secretion, endocytosis or ubiquitin-mediated proteolysis pathways. The expression pattern of 54 histones and chromatin modifiers, which may modulate splicing, were markedly downregulated in islets of diabetic animals. Furthermore, diabetes-susceptible mice carry SNPs in RNA-binding protein motifs and in splice sites potentially responsible for alternative splicing events. They also exhibit a larger exon skipping rate, e.g., in the diabetes gene Abcc8, which might affect protein function. Expression of the neuronal splicing factor Srrm4 which mediates inclusion of microexons in mRNA transcripts was markedly lower in islets of diabetes-prone compared to diabetes-resistant mice, correlating with a preferential skipping of SRRM4 target exons. The repression of Srrm4 expression is presumably mediated via a higher expression of miR-326-3p and miR-3547-3p in islets of diabetic mice. Thus, our study suggests that an altered splicing pattern in islets of diabetes-susceptible mice may contribute to an elevated T2D risk.


Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 1250-P
Author(s):  
JAMES C. JARRELL ◽  
JOSE CASASNOVAS ◽  
LIM KUA

2021 ◽  
Vol 12 ◽  
Author(s):  
Kristel Parv ◽  
Nestori Westerlund ◽  
Kevin Merchant ◽  
Milad Komijani ◽  
Robin S. Lindsay ◽  
...  

The tissue microenvironment in the mouse pancreas has been shown to promote very different polarizations of resident macrophages with islet-resident macrophages displaying an inflammatory “M1” profile and macrophages in the exocrine tissue mostly displaying an alternatively activated “M2” profile. The impact of this polarization on tissue homeostasis and diabetes development is unclear. In this study, the ability of pancreas-resident macrophages to phagocyte bacterial and endogenous debris was investigated. Mouse endocrine and exocrine tissues were separated, and tissue-resident macrophages were isolated by magnetic immunolabeling. Isolated macrophages were subjected to flow cytometry for polarization markers and qPCR for phagocytosis-related genes. Functional in vitro investigations included phagocytosis and efferocytosis assays using pH-sensitive fluorescent bacterial particles and dead fluorescent neutrophils, respectively. Intravital confocal imaging of in situ phagocytosis and efferocytosis in the pancreas was used to confirm findings in vivo. Gene expression analysis revealed no significant overall difference in expression of most phagocytosis-related genes in islet-resident vs. exocrine-resident macrophages included in the analysis. In this study, pancreas-resident macrophages were shown to differ in their ability to phagocyte bacterial and endogenous debris depending on their microenvironment. This difference in abilities may be one of the factors polarizing islet-resident macrophages to an inflammatory state since phagocytosis has been found to imprint macrophage heterogeneity. It remains unclear if this difference has any implications in the development of islet dysfunction or autoimmunity.


Pancreatology ◽  
2021 ◽  
Author(s):  
Yaling Yi ◽  
Xingshen Sun ◽  
Bo Liang ◽  
Nan He ◽  
Katherine N. Gibson-Corley ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 552
Author(s):  
Emily Esakov ◽  
Neha Nandedkar-Kulkarni ◽  
Ali G. Al-Dieri ◽  
Hannah Hafner ◽  
Brigid Gregg ◽  
...  

The newly established CD3FLAG-mIR transgenic mouse model on a C57Bl/6 background has a FLAG tag on the mouse Insulin Receptor (mIR), specifically on T cells, as the FLAG-tagged mIR gene was engineered behind CD3 promoter and enhancer. The IR is a chemotactic molecule for insulin and the Flag-tagged mIR T cells in the BL/6-CD3FLAGmIR transgenic mice can migrate into the pancreas, as shown by immunofluorescent staining. While the transgenic mice do not become diabetic, there are phenotypic and metabolic changes in the islets. The transgenic islets become enlarged and disorganized by 15 weeks and those phenotypes continue out to 35 weeks of age. We examined the islets by RT-PCR for cell markers, ER stress markers, beta cell proliferation markers, and cytokines, as well as measuring serum insulin and insulin content in the pancreas at 15, 25, and 35 weeks of age. In transgenic mice, insulin in serum was increased at 15 weeks of age and glucose intolerance developed by 25 weeks of age. Passage of transgenic spleen cells into C57Bl/6 RAG-/- mice resulted in enlarged and disorganized islets with T infiltration by 4 to 5 weeks post-transfer, replicating the transgenic mouse studies. Therefore, migration of non-antigen-specific T cells into islets has ramifications for islet organization and function.


Sign in / Sign up

Export Citation Format

Share Document