electron acceleration
Recently Published Documents


TOTAL DOCUMENTS

1298
(FIVE YEARS 182)

H-INDEX

74
(FIVE YEARS 8)

2022 ◽  
Vol 924 (2) ◽  
pp. 52
Author(s):  
Mario Riquelme ◽  
Alvaro Osorio ◽  
Daniel Verscharen ◽  
Lorenzo Sironi

Abstract Using 2D particle-in-cell plasma simulations, we study electron acceleration by temperature anisotropy instabilities, assuming conditions typical of above-the-loop-top sources in solar flares. We focus on the long-term effect of T e,⊥ > T e,∥ instabilities by driving the anisotropy growth during the entire simulation time through imposing a shearing or a compressing plasma velocity (T e,⊥ and T e,∥ are the temperatures perpendicular and parallel to the magnetic field). This magnetic growth makes T e,⊥/T e,∥ grow due to electron magnetic moment conservation, and amplifies the ratio ω ce/ω pe from ∼0.53 to ∼2 (ω ce and ω pe are the electron cyclotron and plasma frequencies, respectively). In the regime ω ce/ω pe ≲ 1.2–1.7, the instability is dominated by oblique, quasi-electrostatic modes, and the acceleration is inefficient. When ω ce/ω pe has grown to ω ce/ω pe ≳ 1.2–1.7, electrons are efficiently accelerated by the inelastic scattering provided by unstable parallel, electromagnetic z modes. After ω ce/ω pe reaches ∼2, the electron energy spectra show nonthermal tails that differ between the shearing and compressing cases. In the shearing case, the tail resembles a power law of index α s ∼ 2.9 plus a high-energy bump reaching ∼300 keV. In the compressing runs, α s ∼ 3.7 with a spectral break above ∼500 keV. This difference can be explained by the different temperature evolutions in these two types of simulations, suggesting that a critical role is played by the type of anisotropy driving, ω ce/ω pe, and the electron temperature in the efficiency of the acceleration.


2021 ◽  
Vol 922 (2) ◽  
pp. 134
Author(s):  
Marina Battaglia ◽  
Rohit Sharma ◽  
Yingjie Luo ◽  
Bin Chen ◽  
Sijie Yu ◽  
...  

Abstract Even small solar flares can display a surprising level of complexity regarding their morphology and temporal evolution. Many of their properties, such as energy release and electron acceleration can be studied using highly complementary observations at X-ray and radio wavelengths. We present X-ray observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and radio observations from the Karl G. Jansky Very Large Array (VLA) of a series of GOES A3.4–B1.6 class flares observed on 2013 April 23. The flares, as seen in X-ray and extreme ultraviolet, originated from multiple locations within active region NOAA 11726. A veritable zoo of different radio emissions between 1 GHz and 2 GHz was observed cotemporally with the X-ray flares. In addition to broadband continuum emission, broadband short-lived bursts and narrowband spikes, indicative of accelerated electrons, were observed. However, these sources were located up to 150″ away from the flaring X-ray sources but only some of these emissions could be explained as signatures of electrons that were accelerated near the main flare site. For other sources, no obvious magnetic connection to the main flare site could be found. These emissions likely originate from secondary acceleration sites triggered by the flare, but may be due to reconnection and acceleration completely unrelated to the cotemporally observed flare. Thanks to the extremely high sensitivity of the VLA, not achieved with current X-ray instrumentation, it is shown that particle acceleration happens frequently and at multiple locations within a flaring active region.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012009
Author(s):  
V I Romansky ◽  
A M Bykov ◽  
S M Osipov

Abstract Radio observations revealed a presence of relativistic supernovae - a class of objects intermediate between the regular supernovae and gamma-ray bursts. The typical Lorentz-factors of plasma flows in relativistic radio-bright supernovae were estimated to be about 1.5. Mildly relativistic shocks in electron-ion plasmas are known to efficiently accelerate radio-emitting electrons if the shock is subluminous. The inclination angle of the velocity of subluminous shock to the ambient magnetic field should be below a critical angle which depends on the Mach number and the plasma magnetization parameter. In this paper we present particle-in-cell modeling of electron acceleration by mildly-relativistic collisionless shock of different obliquity in a plasma with ratio of the magnetic energy to the bulk kinetic energy σ ≈ 0.004 which is of interest for the relativistic supernovae modeling. It was shown earlier that a development of the ion scale Bell-type instability in electron-ion relativistic shock may have a strong influence on the electron injection and acceleration. In the time period of about 1500 ω p i − 1 (ωpi is the ion plasma frequency) after the shock initialization the magnetic field fluctuations generated by Bell’s instability may significantly decreases number of accelerated electrons even in a sub-luminous shock. We study here the evolution of the electron spectra of subluminous shocks of different obliquity. This is important to for modeling of synchrothron spectra from relativistic supernovae.


Author(s):  
Yin Shi ◽  
David Rhys Blackman ◽  
Alexey Arefiev

Sign in / Sign up

Export Citation Format

Share Document