checkpoint receptors
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 82)

H-INDEX

12
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Kyle W Kroll ◽  
Spandan V Shah ◽  
Olivier Lucar ◽  
Thomas A Premeaux ◽  
Cecilia M Shikuma ◽  
...  

Natural killer (NK) cells are critical modulators of HIV transmission and disease. While recent evidence suggests a loss of NK cell cytotoxicity during aging, a compound analysis of NK cell biology and aging in persons with HIV (PWH) is lacking. We set out to perform one of the first large comprehensive analyses of people aging with and without HIV to determine NK phenotypic changes during aging and how these changes are modulated while aging with HIV. Utilizing high-dimensional polychromatic flow cytometry we analyzed 30 immune-related proteins spanning broad functions such as trafficking, activation/inhibition, NK specific receptors, and memory/checkpoint receptors on peripheral NK cells from health donors, PWH with viral suppression, and viremic PWH. NK cell phenotypes are dynamic across the age span but are significantly altered in HIV and ART and with co-factors such as CMV. Specifically, NK cells in healthy aging show increasing levels of ⍺4β7 and decreasing CCR7 expression during aging, a phenomenon nearly perfectly reversed in PWH. These HIV-associated trafficking changes could be in part due to NK cell recruitment to HIV reservoir formation in lymphoid tissue or failed mucosal signaling in the HIV-infected gut, but regardless appear to be tight biomarkers of age-related NK cell changes.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6063
Author(s):  
Janina Świderska ◽  
Mateusz Kozłowski ◽  
Sebastian Kwiatkowski ◽  
Aneta Cymbaluk-Płoska

Ovarian cancer is one of the most fatal cancers in women worldwide. Cytoreductive surgery combined with platinum-based chemotherapy has been the current first-line treatment standard. Nevertheless, ovarian cancer appears to have a high recurrence rate and mortality. Immunological processes play a significant role in tumorigenesis. The production of ligands for checkpoint receptors can be a very effective, and undesirable, immunosuppressive mechanism for cancers. The CTLA-4 protein, as well as the PD-1 receptor and its PD-L1 ligand, are among the better-known components of the control points. The aim of this paper was to review current research on immunotherapy in the treatment of ovarian cancer. The authors specifically considered immune checkpoints molecules such as PD-1/PDL-1 as targets for immunotherapy. We found that immune checkpoint-inhibitor therapy does not have an improved prognosis in ovarian cancer; although early trials showed that a combination of anti-PD-1/PD-L1 therapy with targeted therapy might have the potential to improve responses and outcomes in selected patients. However, we must wait for the final results of the trials. It seems important to identify a group of patients who could benefit significantly from treatment with immune checkpoints inhibitors. However, despite numerous trials, ICIs have not become part of routine clinical practice for the treatment of ovarian cancer.


2021 ◽  
Vol 9 (12) ◽  
pp. e002780
Author(s):  
Chang Gon Kim ◽  
Gamin Kim ◽  
Kyung Hwan Kim ◽  
Seyeon Park ◽  
Sunhye Shin ◽  
...  

BackgroundReinvigoration of T-cell exhaustion with antibodies has shown promising efficacy in patients with non-small-cell lung cancer (NSCLC). However, the characteristics of T-cell exhaustion with regard to tumor-infiltrating lymphocytes (TILs) are poorly elucidated in NSCLC. Here, we investigated the exhaustion status of TILs in NSCLC patients at the intraindividual and interindividual levels.MethodsWe obtained paired peripheral blood, normal adjacent tissues, peritumoral tissues, and tumor tissues from 96 NSCLC patients. Features of T-cell exhaustion were analyzed by flow cytometry. T cells were categorized according to their programmed cell death-1 (PD-1) expression (PD-1high, PD-1int, and PD-1neg cells). Patients were classified based on the presence or absence of discrete PD-1high CD8+ TILs. Production of effector cytokines by CD8+ TILs was measured after T-cell stimulation with or without antibodies against immune checkpoint receptors.ResultsProgressive T-cell exhaustion with marked expression of exhaustion-related markers and diminished production of effector cytokines was observed in PD-1high CD8+ TILs compared with PD-1int and PD-1neg CD8+ TILs. Patients with distinct PD-1high CD8+ TILs (PD-1high expressers) exhibited characteristics associated with a favorable anti-PD-1 response compared with those without these lymphocytes (non-PD-1high expressers). Combined inhibition of dual immune checkpoint receptors further restored effector cytokine production by CD8+ TILs following T-cell stimulation. PD-1high CD8+ T lymphocyte populations in the peripheral blood and tumors were significantly correlated.ConclusionsT-cell exhaustion was differentially regulated among individual patients and was prominent in a subgroup of NSCLC patients who may benefit from PD-1 blockade or combined blockade of other immune checkpoint receptors.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3519-3519
Author(s):  
Ivana Spasevska ◽  
Ankush Sharma ◽  
Chloe B. Steen ◽  
Sarah Josefsson ◽  
Yngvild Nuvin Blaker ◽  
...  

Abstract Introduction: Regulatory T cells (Tregs), a highly immunosuppressive subset of CD4 + T cells, represent a key challenge in the tumor microenvironment by limiting potent antitumor immune responses. While high densities of tumor-infiltrating Tregs are associated with poor prognosis in patients with various types of solid cancers, their prognostic impact in B-cell non-Hodgkin lymphoma (NHL) remains unclear. Emerging studies suggest substantial heterogeneity in the phenotype and suppressive capacities of Tregs, emphasizing the importance of understanding Treg diversity and the need for additional markers to identify highly suppressive Tregs. Our in-depth characterization of Tregs in NHL tumors could open new paths for rational drug design, facilitating selective therapeutic manipulation of Tregs to reduce immunosuppression and improve anti-tumor immunity. Methods: Single-cell suspensions from NHL patients (diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), mantle cell lymphoma (MCL) and healthy donors (tonsils and peripheral blood)) were analyzed by fluorescent flow- and mass cytometry to characterize Tregs, focusing on their expression of co-stimulatory and co-inhibitory checkpoint receptors. The immunosuppressive capacity of Tregs was measured by in vitro co-culture of FACS-sorted subsets of Tregs together with autologous CellTrace Violet-labelled T effector cells as responder cells, using samples from FL and tonsils. Live CD4 + T cells were obtained by FACS sorting from DLBCL (n = 3), FL (n = 3) and healthy donor tonsils (n = 3) and subjected to single-cell RNA sequencing (scRNA-seq), Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) and scTCR-seq by the 10X Genomics platform. The computational framework of CIBERSORTx was used to generate unique signature matrices for the three Treg subsets identified by scRNA-seq, to facilitate validation in separate scRNA-seq cohorts (King, Sci Immunol 2021; Roider, Nat Cell Biol 2020), and to impute frequencies of the Treg subsets in cohorts with bulk RNA-seq data (Chapuy, Nat Med 2018; Schmitz, NEJM 2018; Pastore, Lancet Oncol 2015). Results: Immunophenotyping by mass cytometry revealed a subset of activated Tregs identified by co-expression of TIGIT, CTLA-4, PD-1, ICOS and OX40, and higher expression of FOXP3, CD25 and CD45RO, that was present in DLBCL and tonsils, but lacking in peripheral blood. This was validated by fluorescent flow cytometry, demonstrating significantly higher frequencies of activated Tregs in NHL tumors compared to PBMCs and tonsils from healthy donors. The phenotypic heterogeneity of intratumoral Tregs reflected different suppressive capacities as activated Tregs more potently suppressed the proliferation of autologous effector CD4 + and CD8 + T cells than naïve Tregs. For global transcriptomic profiling of CD4 + T cells from FL, DLBCL and tonsillar samples, we integrating scRNA-seq and CITE-seq data from 17,774 cells, revealing 13 distinct cellular states including three states of Tregs: naïve, activated and non-conventional LAG3 +FOXP3 - Tregs. Activated Tregs had higher expression of checkpoint receptors (TNFRSF4, TNFRSF18, ICOS), phosphatases (DUSP2, DUSP4), NF-κB pathway (NFKBIA, TNFAIP3, NFKBIZ, REL), chemokine receptors (CXCR4) and transcription factors (JUNB, IRF1, STAT3) as compared to naïve Tregs. We next used a computational approach to develop unique signature matrices for each Treg subset. This approach demonstrated strong concordance between CIBERSORTx estimated cell abundances of the three Treg subsets and the ground truth, and was validated in two external scRNA-seq cohorts. The development of unique signature matrices for Treg subsets facilitated imputation of their frequencies in bulk RNA-seq datasets. These analyses revealed that higher frequency of activated Tregs was enriched in the germinal B cell subtype of DLBCL and was associated with adverse outcome in FL. Conclusion: This study demonstrates that Tregs infiltrating NHL tumors are transcriptionally and functionally diverse and include highly immunosuppressive activated Tregs co-expressing several checkpoint receptors, which distinguish them from peripheral blood Tregs. Activated intratumoral Tregs could hamper clinical responses to checkpoint blockade, and identifying and targeting their vulnerabilities has the potential to improve anti-tumor immune responses. Disclosures Holte: Gilead: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Nordic: Membership on an entity's Board of Directors or advisory committees; Nanovector: Membership on an entity's Board of Directors or advisory committees, Other: lectures honorarias; Novartis: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees. Alizadeh: Cibermed: Consultancy, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; CAPP Medical: Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; Forty Seven: Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; Foresight Diagnostics: Consultancy, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; Roche: Consultancy, Honoraria; Janssen Oncology: Honoraria; Celgene: Consultancy, Research Funding; Gilead: Consultancy; Bristol Myers Squibb: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4705-4705
Author(s):  
Slavisa Ninkovic ◽  
Louise E. Purton ◽  
Simon J Harrison ◽  
Hang Quach

Abstract Aim: A dysfunctional iTME facilitates disease progression in MM. Studies have demonstrated the association between the spatial distribution of immune cells and progression of various cancers. Using mIHC we aim to describe quantitative and qualitative changes in CD3+CD8+ T-cells (T cytotoxic) in patients with MGUS, ND and relapsed/refractory MM (RRMM) and assess spatial proximity to PCs. Method: Formalin-fixed, paraffin-embedded trephine sections from pts with MGUS (n=32), NDMM (n=65) and RRMM (n=59) were sequentially stained for CD138, CD3, CD8 and checkpoint receptors (CPs) Tim3, Lag-3 and PD-1 (Figure 1). Halo® image analysis platform was used for cell segmentation and phenotyping, facilitating enumeration of T cytotoxic populations and analysis of proximity to PCs. Descriptive statistics and ordinary one-way ANOVA were applied as appropriate. Results: Patient demographics, disease characteristics, treatment (including prior therapies, where applicable), best response, duration of response, median progression free (PFS) and overall survival (OS) will be presented for all cohorts. There was no difference in BM cellularity or total number of nucleated cells assessed across the cohorts (p=0.16 and p=0.25). PC % was higher in the ND and RRMM compared to MUGS cohort (p<0.001). The average distance between T cytotoxic and PCs was similar between the cohorts (p=0.38), but a higher proportion of T cytotoxic were within 50μm of a PC in the ND cohort (p=0.0036, 90.8±15.8% (ND) vs. 77.6±19.5% (MGUS) and 80.1±25.9% (RR)). The % of unique PCs with a single T cytotoxic within 100μm is higher in patients with MGUS and RRMM than NDMM (p=0.0007). There was no difference in the %CD3+, %CD3+CD8+ or %CD3+ cells expressing CD8 (p=0.22, p=0.62, p=0.48). CP expression on T cytotoxic was similar (Tim3 p=0.46, Lag-3 p=0.35; PD-1 p=0.54) with no difference in dual or triple CP expression. Sub-analyses assessing CP expression patterns and T cytotoxic/PC proximity within individual cohorts based on response to treatment/disease progression are to follow. Conclusion: The infiltration of cytotoxic T cells into tumours is a critical factor in immunotherapy efficacy. Here we clearly demonstrate the feasibility of mIHC to describe the spatial context of the iTME and we plan to implement it for predictive value in future studies of immunotherapies in patients with MM. Figure 1: Bone marrow FFPE trephine section stained with mIHC using the Opal TM workflow demonstrating plasma cells (CD138, green), T cells (CD3, yellow; CD8, pink) and checkpoint receptors (PD-1, orange; Lag-3, magenta; Tim3, light blue) with colocalisation of some signals. Disclosures Harrison: Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene/ Juno/ BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen Cilag: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Roche/Genentech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Haemalogix: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Sanofi: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; GSK: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Eusa: Consultancy, Honoraria, Speakers Bureau; Terumo BCT: Consultancy, Honoraria. Quach: Janssen/Cilag: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; CSL: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Antengene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; GlaxoSmithKline: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Sanofi: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xiaozheng Xu ◽  
Takeya Masubuchi ◽  
Qixu Cai ◽  
Yunlong Zhao ◽  
Enfu Hui

A large number of inhibitory receptors recruit SHP1 and/or SHP2, tandem-SH2-containing phosphatases, through phosphotyrosine-based motifs ITIM and ITSM. Despite the similarity, these receptors exhibit differential effector binding specificities, as exemplified by the immune checkpoint receptors PD-1 and BTLA, which preferentially recruit SHP2 and SHP1 respectively. The molecular basis by which structurally similar receptors discriminate SHP1 and SHP2 is unclear. Here, we provide evidence that human PD-1 and BTLA optimally bind to SHP1 and SHP2 via a bivalent, parallel mode that involves both SH2 domains of SHP1 or SHP2. PD-1 mainly uses its ITSM to prefer SHP2 over SHP1 via their C-terminal SH2 domains (cSH2): swapping SHP1-cSH2 with SHP2-cSH2 enabled PD-1:SHP1 association in T cells. In contrast, BTLA primarily utilizes its ITIM to prefer SHP1 over SHP2 via their N-terminal SH2 domains (nSH2). The ITIM of PD-1, however, appeared to be de-emphasized due to a glycine at pY+1 position. Substitution of this glycine with alanine, a residue conserved in BTLA and several SHP1-recruiting receptors, was sufficient to induce PD-1:SHP1 interaction in T cells. Finally, structural simulation and mutagenesis screening showed that SHP1 recruitment activity exhibits a bell-shaped dependence on the side chain volume of the pY+1 residue of ITIM. Collectively, we provide a molecular interpretation of the SHP1/SHP2-binding specificities of PD-1 and BTLA, with implications for the mechanisms of a large family of therapeutically relevant receptors.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi93-vi93
Author(s):  
Stephanie Sanders ◽  
Denise Herpai ◽  
Waldemar Debinski

Abstract Glioblastoma (GBM) is an immunologically cold tumor. Using single cell sequencing of CD45+ cells we confirmed that T cells are present within GBM samples. These T cells are positive for exhaustion markers such as LAG3 and TIGIT, as well as CTLA4 and PD1 checkpoint receptors. Modulating T cell activity through use of immune checkpoint inhibitors (ICIs) has shown efficacy in the treatment of a variety of solid tumors, and the combination of anti-CTLA4 and anti-PD1 ICIs has shown increased efficacy over use of a single therapeutic. Additionally, targeting ICIs to the tumor cells may increase efficacy of this treatment. We therefore constructed a combinatorial ICI redirected to GBM via interleukin 13 receptor alpha 2 (IL13RA2), a receptor over-expressed on the majority of GBM cells but not normal brain. The first component of the construct, labeled with a histidine tag, targets CTLA4 while the second component, tagged with a StrepII tag, targets PD1. The tags added to the constructs will allow for purification of a combinatorial heterodimer simultaneously targeting PD1, CTLA4 and IL13RA2. We purified individual components via fast protein liquid chromatography (FPLC) using a proteinG column followed by a HisTrap or StrepTrap column. We obtained a recombinant, targeted multivalent ICI at > 95% purity. We found that these constructs are able to bind their target receptors via ELISA in which the Kd values ranged from picomolar to low nanomolar range. Additionally, our constructs bind their target on live cells by flow cytometry. We next designed a heterodimeric construct which can combinatorially target CTLA4 and PD1 while also directing the ICI therapy to GBM. These constructs in conjunction with other immune stimulants like cytotoxic therapies are intended to facilitate the interaction between T cells and GBM tumor cells directly in a tumor microenvironment.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A802-A802
Author(s):  
Donghwan Jeon ◽  
Douglas McNeel

BackgroundT-cell checkpoint receptors are expressed when T-cell are activated, and activation of these receptors can impair the function of T-cells and their anti-tumor efficacy.1 We previously found that T-cells activated with cognate antigen increase the expression of PD-1, while this can be attenuated by the presence of specific Toll-like receptor (TLR) agonists.2 3 This effect was mediated by IL-12 secretion from professional antigen presenting cells and resulted in CD8+ T cells with greater anti-tumor activity. In the current report, we sought to determine whether combination of TLR agonists can further affect the expression of T-cell checkpoint receptors and improve T-cell anti-tumor immunity.MethodsOT-1 CD8+ T cells were stimulated with peptide (SIINFEKL) and dendritic cells (DC) in the presence of two different TLR agonists. The cells were collected and evaluated for the expression of T-cell checkpoint receptors (PD-1, CTLA-4, CD160, CD244, LAG-3, TIM-3, TIGIT and VISTA) by flow cytometry, and for transcriptional changes by RNA-seq. Purified DC were stimulated with TLR combinations and evaluated for cytokine release by ELISA. The anti-tumor efficacy of vaccination using peptide and TLR agonist combinations was evaluated in EG7-OVA tumor-bearing mice.ResultsActivation of CD8+ T cells in the presence of specific TLR ligands resulted in decreases in expression of PD-1 and/or CD160. These changes in T-cell checkpoint receptor expression were modestly affected when TLR ligands were used in combination, and notably with combinations of TLR1/2, TLR3, and TLR9 agonists. Immunization of tumor-bearing mice, co-administered with combinations of these agonists, showed greater anti-tumor effects. However, while the effect of TLR1/2 and/or TLR9 was abrogated in IL12KO mice, TLR3 demonstrated anti-tumor activity when co-administered with peptide vaccine. RNA sequencing of TLR-conditioned CD8+ T-cells revealed IL-12 pathway activation, and IFNß pathway activation following TLR3 stimulation. Stimulation of DC with TLR3 agonist, alone or in combination with other TLR agonists, resulted in increased IL-12 and IFNß secretion. Co-incubation of OT-1 splenocytes with rIL12 and/or rIFNß during peptide activation led to reduced expression of PD-1, and this could be reversed with antibodies blocking IL12R or IFNAR-1.ConclusionsMultiple TLR agonists can modulate the expression of T-cell checkpoint receptors, notably PD-1, by upregulating the secretion of IL-12 and IFNß. These data provide the mechanistic rationale for choosing optimal combinations of TLR ligands to use as adjuvants to improve the efficacy of anti-tumor vaccines.ReferencesJin H-T, et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proceedings of the National Academy of Sciences 2010;107(33):14733–14738.Zahm CD, Colluru VT, McNeel DG. Vaccination with high-affinity epitopes impairs antitumor efficacy by increasing PD-1 expression on CD8+ T cells. Cancer Immunology Research 2017;5(8):630–641.Zahm CD, et al. TLR stimulation during T-cell activation lowers PD-1 expression on CD8+ T Cells. Cancer Immunology Research 2018;6(11):1364–1374.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhiyu Xi ◽  
Pamela S. Jones ◽  
Masaaki Mikamoto ◽  
Xiaobin Jiang ◽  
Alexander T. Faje ◽  
...  

Human pituitary adenomas are one of the most common intracranial neoplasms. Although most of these tumors are benign and can be treated medically or by transsphenoidal surgery, a subset of these tumors are fast-growing, aggressive, recur, and remain a therapeutic dilemma. Because antibodies against immune checkpoint receptors PD-1 and CLTA-4 are now routinely used for cancer treatment, we quantified the expression of mRNA coding for PD-1, CLTA-4, and their ligands, PD-L1, PD-L2, CD80, and CD86 in human pituitary adenomas and normal pituitary glands, with the ultimate goal of exploiting immune checkpoint therapy in aggressive pituitary adenomas. Aggressive pituitary adenomas demonstrated an increased expression of PD-L2, CD80, and CD86 in compared to that of normal human pituitary glands. Furthermore, aggressive pituitary tumors demonstrated significantly higher levels of CD80 and CD86 compared to non-aggressive tumors. Our results establish a rationale for studying a potential role for immune checkpoint inhibition therapy in the treatment of pituitary adenomas.


2021 ◽  
Vol 41 (10) ◽  
pp. 4895-4905
Author(s):  
PRAJWAL NEUPANE ◽  
KOSAKU MIMURA ◽  
SHOTARO NAKAJIMA ◽  
HIROKAZU OKAYAMA ◽  
MISATO ITO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document