effector binding
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 38)

H-INDEX

34
(FIVE YEARS 4)

FEBS Letters ◽  
2022 ◽  
Author(s):  
Daniella E. Roberts ◽  
Amy M. Benton ◽  
Claire Fabian‐Bayola ◽  
Anne M. Spuches ◽  
Adam R. Offenbacher

2021 ◽  
Vol 22 (24) ◽  
pp. 13628
Author(s):  
Tao Wu ◽  
Haimiao Zhang ◽  
Yunya Bi ◽  
Yue Yu ◽  
Haifeng Liu ◽  
...  

Xanthomonas oryzae delivers transcription activator-like effectors (TALEs) into plant cells to facilitate infection. Following economic principles, the redundant TALEs are rarely identified in Xanthomonas. Previously, we identified the Tal2b, which activates the expression of the rice 2-oxoglutarate-dependent dioxygenase gene OsF3H03g to promote infection in the highly virulent strain of X. oryzae pv. oryzicola HGA4. Here, we reveal that another clustered TALE, Tal2c, also functioned as a virulence factor to target rice OsF3H04g, a homologue of OsF3H03g. Transferring Tal2c into RS105 induced expression of OsF3H04g to coincide with increased susceptibility in rice. Overexpressing OsF3H04g caused higher susceptibility and less salicylic acid (SA) production compared to wild-type plants. Moreover, CRISPR–Cas9 system-mediated editing of the effector-binding element in the promoters of OsF3H03g or OsF3H04g was found to specifically enhance resistance to Tal2b- or Tal2c-transferring strains, but had no effect on resistance to either RS105 or HGA4. Furthermore, transcriptome analysis revealed that several reported SA-related and defense-related genes commonly altered expression in OsF3H04g overexpression line compared with those identified in OsF3H03g overexpression line. Overall, our results reveal a functional redundancy mechanism of pathogenic virulence in Xoc in which tandem Tal2b and Tal2c specifically target homologues of host genes to interfere with rice immunity by reducing SA.


2021 ◽  
Vol 118 (50) ◽  
pp. e2113996118
Author(s):  
Nitika Mukhi ◽  
Hannah Brown ◽  
Danylo Gorenkin ◽  
Pingtao Ding ◽  
Adam R. Bentham ◽  
...  

Plants use intracellular nucleotide-binding domain (NBD) and leucine-rich repeat (LRR)–containing immune receptors (NLRs) to detect pathogen-derived effector proteins. The Arabidopsis NLR pair RRS1-R/RPS4 confers disease resistance to different bacterial pathogens by perceiving the structurally distinct effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia solanacearum via an integrated WRKY domain in RRS1-R. How the WRKY domain of RRS1 (RRS1WRKY) perceives distinct classes of effector to initiate an immune response is unknown. Here, we report the crystal structure of the in planta processed C-terminal domain of AvrRps4 (AvrRps4C) in complex with RRS1WRKY. Perception of AvrRps4C by RRS1WRKY is mediated by the β2-β3 segment of RRS1WRKY that binds an electronegative patch on the surface of AvrRps4C. Structure-based mutations that disrupt AvrRps4C–RRS1WRKY interactions in vitro compromise RRS1/RPS4-dependent immune responses. We also show that AvrRps4C can associate with the WRKY domain of the related but distinct RRS1B/RPS4B NLR pair, and the DNA-binding domain of AtWRKY41, with similar binding affinities and how effector binding interferes with WRKY–W-box DNA interactions. This work demonstrates how integrated domains in plant NLRs can directly bind structurally distinct effectors to initiate immunity.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xiaozheng Xu ◽  
Takeya Masubuchi ◽  
Qixu Cai ◽  
Yunlong Zhao ◽  
Enfu Hui

A large number of inhibitory receptors recruit SHP1 and/or SHP2, tandem-SH2-containing phosphatases, through phosphotyrosine-based motifs ITIM and ITSM. Despite the similarity, these receptors exhibit differential effector binding specificities, as exemplified by the immune checkpoint receptors PD-1 and BTLA, which preferentially recruit SHP2 and SHP1 respectively. The molecular basis by which structurally similar receptors discriminate SHP1 and SHP2 is unclear. Here, we provide evidence that human PD-1 and BTLA optimally bind to SHP1 and SHP2 via a bivalent, parallel mode that involves both SH2 domains of SHP1 or SHP2. PD-1 mainly uses its ITSM to prefer SHP2 over SHP1 via their C-terminal SH2 domains (cSH2): swapping SHP1-cSH2 with SHP2-cSH2 enabled PD-1:SHP1 association in T cells. In contrast, BTLA primarily utilizes its ITIM to prefer SHP1 over SHP2 via their N-terminal SH2 domains (nSH2). The ITIM of PD-1, however, appeared to be de-emphasized due to a glycine at pY+1 position. Substitution of this glycine with alanine, a residue conserved in BTLA and several SHP1-recruiting receptors, was sufficient to induce PD-1:SHP1 interaction in T cells. Finally, structural simulation and mutagenesis screening showed that SHP1 recruitment activity exhibits a bell-shaped dependence on the side chain volume of the pY+1 residue of ITIM. Collectively, we provide a molecular interpretation of the SHP1/SHP2-binding specificities of PD-1 and BTLA, with implications for the mechanisms of a large family of therapeutically relevant receptors.


2021 ◽  
Vol 9 (10) ◽  
pp. 2065
Author(s):  
In-Jeong Kang ◽  
Kyung Seok Kim ◽  
Gwyn Beattie ◽  
Jung-Wook Yang ◽  
Kee Hoon Sohn ◽  
...  

Xanthomonas citri pv. glycines is a major pathogen of soybean in Korea. Here, we analyzed pathogenicity genes based on a comparative genome analysis of five Korean strains and one strain from the United States, 8ra. Whereas all six strains had nearly identical profiles of carbohydrate-active enzymes, they varied in diversity and number of candidate type III secretion system effector (T3SE) genes. The five Korean strains were similar in their effectors, but differed from the 8ra strain. Across the six strains, transcription activator-like effectors (TALEs) showed diverse repeat sizes and at least six forms of the repeat variable di-residue (RVD) sequences, with differences not correlated with the origin of the strains. However, a phylogenetic tree based on the alignment of RVD sequences showed two distinct clusters with 17.5 repeats, suggesting that two distinct 17.5 RVD clusters have evolved, potentially to adapt Xcg to growth on distinct soybean cultivars. The predicted effector binding elements of the TALEs fell into six groups and were strongly overlapping in sequence, suggesting evolving target specificity of the binding domains in soybean cultivars. Our findings reveal the variability and adaptability of T3SEs in the Xcg strains and enhance our understanding of Xcg pathogenicity in soybean.


2021 ◽  
Author(s):  
Simon d'Oelsnitz ◽  
Wantae Kim ◽  
Nathaniel Burkholder ◽  
Kamyab Javanmardi ◽  
Ross Thyer ◽  
...  

Abstract A key bottleneck in the microbial production of therapeutic plant metabolites is identifying enzymes that can greatly improve yield. The facile identification of genetically encoded biosensors can overcome this limitation and become part of a general method for engineering scaled production. We have developed a unique combined screening and selection approach that quickly refines the affinities and specificities of generalist transcription factors, and using RamR as a starting point we evolve highly specific (>100-fold preference) and sensitive (EC50 <30 μM) biosensors for the alkaloids tetrahydropapaverine, papaverine, glaucine, rotundine, and noscapine. High resolution structures reveal multiple evolutionary avenues for the fungible effector binding site, and the creation of new pockets for different chemical moieties. These sensors further enabled the evolution of a streamlined pathway for tetrahydropapaverine, an immediate precursor to four modern pharmaceuticals, collapsing multiple methylation steps into a single evolved enzyme. Our methods for evolving biosensors now enable the rapid engineering of pathways for therapeutic alkaloids.


2021 ◽  
Author(s):  
Enfu Hui ◽  
Xiaozheng Xu ◽  
Takeya Masubuchi ◽  
Yunlong Zhao

Numerous inhibitory immunoreceptors operate by recruiting phosphatase effectors Shp1 and Shp2 through conserved motifs ITIM and ITSM. Despite the similarity, these receptors exhibit distinct effector binding specificities, as exemplified by PD-1 and BTLA, which preferentially recruit Shp2 and Shp1 respectively. The molecular basis of Shp1/Shp2 discrimination is unclear. Here, we provide evidence that optimal PD-1 and BTLA binding to both Shp1 and Shp2 occurs via a bivalent, parallel mode that involves both SH2 domains of Shp1/Shp2. Moreover, PD-1 mainly uses its ITSM to discriminate Shp2 from Shp1 via their C-terminal SH2 domains. Supportive of this model, swapping the Shp1-cSH2 with Shp2-cSH2 enabled PD-1:Shp1 association in T cells. In contrast, BTLA primarily utilizes its ITIM to discriminate Shp1 from Shp2 via their N-terminal SH2 domains. Substitution of glycine at pY+1 position of the PD-1-ITIM with alanine, a residue conserved in several Shp1-recruiting receptors, was sufficient to induce PD-1:Shp1 interaction in T cells. Finally, mutagenesis screening shows that Shp1 recruitment exhibits a bell-shaped dependence on the side chain volume of the pY+1 residue of ITIM. Collectively, we provide a molecular interpretation of the Shp1/Shp2-binding specificities of PD-1 and BTLA, with general implications for the mechanism of effector discrimination by inhibitory receptors.


2021 ◽  
Author(s):  
Simon d'Oelsnitz ◽  
Wantae Kim ◽  
Nathaniel T Burkholder ◽  
Kamyab javanmardi ◽  
Ross Thyer ◽  
...  

A key bottleneck in the microbial production of therapeutic plant metabolites is identifying enzymes that can greatly improve yield. The facile identification of genetically encoded biosensors can overcome this limitation and become part of a general method for engineering scaled production. We have developed a unique combined screening and selection approach that quickly refines the affinities and specificities of generalist transcription factors, and using RamR as a starting point we evolve highly specific (>100-fold preference) and sensitive (EC50 <30 μM) biosensors for the alkaloids tetrahydropapaverine, papaverine, glaucine, rotundine, and noscapine. High resolution structures reveal multiple evolutionary avenues for the fungible effector binding site, and the creation of new pockets for different chemical moieties. These sensors further enabled the evolution of a streamlined pathway for tetrahydropapaverine, an immediate precursor to four modern pharmaceuticals, collapsing multiple methylation steps into a single evolved enzyme. Our methods for evolving biosensors now enable the rapid engineering of pathways for therapeutic alkaloids.


2021 ◽  
Vol 8 ◽  
Author(s):  
Renata Tisi ◽  
Michela Spinelli ◽  
Alessandro Palmioli ◽  
Cristina Airoldi ◽  
Paolo Cazzaniga ◽  
...  

Ras oncoproteins play a crucial role in the onset, maintenance, and progression of the most common and deadly human cancers. Despite extensive research efforts, only a few mutant-specific Ras inhibitors have been reported. We show that cmp4–previously identified as a water-soluble Ras inhibitor– targets multiple steps in the activation and downstream signaling of different Ras mutants and isoforms. Binding of this pan-Ras inhibitor to an extended Switch II pocket on HRas and KRas proteins induces a conformational change that down-regulates intrinsic and GEF-mediated nucleotide dissociation and exchange and effector binding. A mathematical model of the Ras activation cycle predicts that the inhibitor severely reduces the proliferation of different Ras-driven cancer cells, effectively cooperating with Cetuximab to reduce proliferation even of Cetuximab-resistant cancer cell lines. Experimental data confirm the model prediction, indicating that the pan-Ras inhibitor is an appropriate candidate for medicinal chemistry efforts tailored at improving its currently unsatisfactory affinity.


2021 ◽  
Vol 478 (3) ◽  
pp. 553-578
Author(s):  
Asad U. Malik ◽  
Athanasios Karapetsas ◽  
Raja S. Nirujogi ◽  
Sebastian Mathea ◽  
Deep Chatterjee ◽  
...  

Autosomal dominant mutations in LRRK2 that enhance kinase activity cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases including Rab8A and Rab10 within its effector binding motif. Here, we explore whether LRRK1, a less studied homolog of LRRK2 that regulates growth factor receptor trafficking and osteoclast biology might also phosphorylate Rab proteins. Using mass spectrometry, we found that in LRRK1 knock-out cells, phosphorylation of Rab7A at Ser72 was most impacted. This residue lies at the equivalent site targeted by LRRK2 on Rab8A and Rab10. Accordingly, recombinant LRRK1 efficiently phosphorylated Rab7A at Ser72, but not Rab8A or Rab10. Employing a novel phospho-specific antibody, we found that phorbol ester stimulation of mouse embryonic fibroblasts markedly enhanced phosphorylation of Rab7A at Ser72 via LRRK1. We identify two LRRK1 mutations (K746G and I1412T), equivalent to the LRRK2 R1441G and I2020T Parkinson's mutations, that enhance LRRK1 mediated phosphorylation of Rab7A. We demonstrate that two regulators of LRRK2 namely Rab29 and VPS35[D620N], do not influence LRRK1. Widely used LRRK2 inhibitors do not inhibit LRRK1, but we identify a promiscuous inhibitor termed GZD-824 that inhibits both LRRK1 and LRRK2. The PPM1H Rab phosphatase when overexpressed dephosphorylates Rab7A. Finally, the interaction of Rab7A with its effector RILP is not affected by LRRK1 phosphorylation and we observe that maximal stimulation of the TBK1 or PINK1 pathway does not elevate Rab7A phosphorylation. Altogether, these findings reinforce the idea that the LRRK enzymes have evolved as major regulators of Rab biology with distinct substrate specificity.


Sign in / Sign up

Export Citation Format

Share Document