hörmander’s condition
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 281 (11) ◽  
pp. 109225
Author(s):  
Alberto Ohashi ◽  
Francesco Russo ◽  
Evelina Shamarova

2020 ◽  
Vol 126 (2) ◽  
pp. 259-275
Author(s):  
Huiju Wang ◽  
Pengcheng Niu

In this paper we consider the convex integral functional $ I := \int _\Omega {\Phi (g_u)\,d\mu } $ in the metric measure space $(X,d,\mu )$, where $X$ is a set, $d$ is a metric, µ is a Borel regular measure satisfying the doubling condition, Ω is a bounded open subset of $X$, $u$ belongs to the Orlicz-Sobolev space $N^{1,\Phi }(\Omega )$, Φ is an N-function satisfying the $\Delta _2$-condition, $g_u$ is the minimal Φ-weak upper gradient of $u$. By improving the corresponding method in the Euclidean space to the metric setting, we establish the local boundedness for minimizers of the convex integral functional under the assumption that $(X,d,\mu )$ satisfies the $(1,1)$-Poincaré inequality. The result of this paper can be applied to the Carnot-Carathéodory space spanned by vector fields satisfying Hörmander's condition.


2019 ◽  
pp. 1-31
Author(s):  
YUZURU INAHAMA ◽  
NOBUAKI NAGANUMA

We study a rough differential equation driven by fractional Brownian motion with Hurst parameter $H$ $(1/4<H\leqslant 1/2)$ . Under Hörmander’s condition on the coefficient vector fields, the solution has a smooth density for each fixed time. Using Watanabe’s distributional Malliavin calculus, we obtain a short time full asymptotic expansion of the density under quite natural assumptions. Our main result can be regarded as a “fractional version” of Ben Arous’ famous work on the off-diagonal asymptotics.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yan Dong ◽  
Guangwei Du ◽  
Kelei Zhang

Abstract In this paper, we study the degenerate parabolic system $$ u_{t}^{i} + X_{\alpha }^{*} \bigl(a_{ij}^{\alpha \beta }(z){X_{\beta }} {u^{j}}\bigr) = {g_{i}}(z,u,Xu) + X_{\alpha }^{*} f_{i}^{\alpha }(z,u,Xu), $$ u t i + X α ∗ ( a i j α β ( z ) X β u j ) = g i ( z , u , X u ) + X α ∗ f i α ( z , u , X u ) , where $X=\{X_{1},\ldots,X_{m} \}$ X = { X 1 , … , X m } is a system of smooth real vector fields satisfying Hörmander’s condition and the coefficients $a_{ij}^{\alpha \beta }$ a i j α β are measurable functions and their skew-symmetric part can be unbounded. After proving the $L^{2}$ L 2 estimates for the weak solutions, the higher integrability is proved by establishing a reverse Hölder inequality for weak solutions.


Sign in / Sign up

Export Citation Format

Share Document