enhanced resolution
Recently Published Documents


TOTAL DOCUMENTS

451
(FIVE YEARS 85)

H-INDEX

40
(FIVE YEARS 5)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 319
Author(s):  
Johnson H. Y. Chung ◽  
Sepidar Sayyar ◽  
Gordon G. Wallace

Melt-electrowriting (MEW) is an emerging method that combines electrospinning and extrusion printing, allowing the fabrication of micron-scale structures suitable for tissue engineering. Compared to other additive fabrication methods, melt-electro written structures can offer more appropriate substrates for cell culture due to filament size and mechanical characteristics of the fabricated scaffolds. In this study, polycaprolactone (PCL)/graphene composites were investigated for fabrication of micron-size scaffolds through MEW. It was demonstrated that the addition of graphene can considerably improve the processability of PCL to fabricate micron-scale scaffolds with enhanced resolution. The tensile strength of the scaffold prepared from PCL/graphene composite (with only 0.5 wt.% graphene) was proved significantly (by more than 270%), better than that of the pristine PCL scaffold. Furthermore, graphene was demonstrated to be a suitable material for tailoring the degradation process to avoid undesirable bulk degradation, rapid mass loss and damage to the internal matrix of the polymer. The findings of this study offer a promising route for the fabrication of high-resolution scaffolds with micron-scale resolution for tissue engineering.


Author(s):  
Dhanvanth J.S. Talluri ◽  
HuanTan Nguyen ◽  
Reza Avazmohammadi ◽  
Amir K. Miri

Abstract Extrusion three-dimensional (3D) bioprinting typically requires an ad-hoc trial-and-error optimization of the bioink composition towards enhanced resolution. The bioink solutions are solidified after leaving cone-shaped or cylindrical nozzles. The presence of bioink instability not only hampers the extrusion resolution but also affects the behavior of embedded cellular components. This is a key factor in selecting bioinks and bioprinting design parameters for well-established desktop and handheld bioprinters. In this work, we developed an analytical solution for the process of bioink deposition and compared its predictions against numerical simulations of the deposition. We estimated the onset of bioink instability as a function of bioink rheological properties and nozzle geometry. Both analytical and simulation results demonstrated that enhancing shear-thinning behavior of the bioink stabilizes the printing process whereas bioink shear-thickening behavior induces an opposite effect through extending the toe region of the deposition. The present study serves as a benchmark for detailed simulations of the extrusion process for optimal bioprinting.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259347
Author(s):  
Lutz Gärtner ◽  
Philipp Spitzer ◽  
Kathrin Lauss ◽  
Marko Takanen ◽  
Thomas Lenarz ◽  
...  

In cochlear implant (CI) users, measurements of electrically evoked compound action potentials (ECAPs) prove the functionality of the neuron-electrode interface. Objective measures, e.g., the ECAP threshold, may serve as a basis for the clinical adjustment of the device for the optimal benefit of the CI user. As for many neural responses, the threshold determination often is based on the subjective assessment of the clinical specialist, whose decision-making process could be aided by autonomous computational algorithms. To that end, we extended the signal-to-noise ratio (SNR) approach for ECAP threshold determination to be applicable for FineGrain (FG) ECAP responses. The new approach takes advantage of two features: the FG stimulation paradigm with its enhanced resolution of recordings, and SNR-based ECAP threshold determination, which allows defining thresholds independently of morphology and with comparably low computational power. Pearson’s correlation coefficient r between the ECAP threshold determined by five experienced evaluators and the threshold determined with the FG-SNR algorithm was in the range of r = 0.78–0.93. Between evaluators, r was in a comparable range of 0.84–0.93. A subset of the parameters of the algorithm was varied to identify the parameters with the highest potential to improve the FG-SNR formalism in the future. The two steps with the strongest influence on the agreement between the threshold estimate of the evaluators and the algorithm were the removal of undesired frequency components (denoising of the response traces) and the exact determination of the two time windows (signal and noise and noise only).”The parameters were linked to the properties of an ECAP response, indicating how to adjust the algorithm for the automatic detection of other neurophysiological responses.


2021 ◽  
Vol 15 ◽  
Author(s):  
Qinyang Shou ◽  
Xingfeng Shao ◽  
Danny J. J. Wang

Purpose: To achieve high spatial resolution (isotropic-2 mm) perfusion imaging using 2D simultaneous multi-slice (SMS) pseudo-continuous arterial spin labeling (pCASL) and slice dithered enhanced resolution (SLIDER) technique for super-resolution reconstruction.Methods: The SLIDER-SMS pCASL with a multiband factor of 4 was implemented at 3T with three numbers of slice shift (2/3/4) for the slice thickness of 4/6/8 mm, respectively. Super-resolution reconstruction was performed with singular value decomposition and different levels of Tikhonov regularizations. Temporal and spatial signal-to-noise ratio (SNR) as well as spatial blurring effects of super-resolution ASL images were measured in five healthy subjects and compared with those of reference high-resolution ASL images.Results: Compared to conventional 2D SMS ASL, super-resolution ASL images with isotropic-2-mm resolution yielded 42, 61, and 88% higher spatial SNR, and 18, 55, and 105% higher temporal SNR with slice shift number of 2/3/4, respectively. Spatial blurring effect increased for SLIDER reconstruction from two to four slice shifts.Conclusion: The proposed SLIDER-SMS pCASL technique can achieve whole-brain high-resolution perfusion images with ∼15-min scan time and improved SNR compared to standard 2D SMS pCASL. Caution needs to be exercised on quantifying and controlling blurring effects of SLIDER reconstruction.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6081
Author(s):  
Alice Delmer ◽  
Anne Ferréol ◽  
Pascal Larzabal

L0 sparse methods are not widespread in [AD]DOADirection-Of-Arrival (DOA) estimation yet, [AD]althoughdespite their potential superiority over classical methods in difficult scenarios. This comes from the difficulties encountered for [AD]theglobal optimization on hill-climbing error surfaces. In this paper, we explore the loss landscapes of L0 and [AD]CEL0Continuous Exact L0 (CEL0) regularized problems in order to design a new optimization scheme. As expected, we observe that the recently introduced CEL0 penalty leads to an error surface with less local minima than the L0 one. This property explains the good behavior of [AD]the CEL0-regularized sparse DOA estimation problem for well-separated sources. Unfortunately, CEL0-regularized landscape enlarges L0-basins in the middle of close sources, and CEL0 methods are thus unable to resolve two close sources. Consequently, we propose to alternate between both error surfaces to increase the probability of reaching the global solution. Experiments show that the proposed approach offers better performance than existing ones, and particularly an enhanced resolution limit.


2021 ◽  
Vol 13 (16) ◽  
pp. 3106
Author(s):  
Deodato Tapete ◽  
Arianna Traviglia ◽  
Eleonora Delpozzo ◽  
Francesca Cigna

“Tells” are archaeological mounds formed by deposition of large amounts of anthropogenic material and sediments over thousands of years and are the most important and prominent features in Near and Middle Eastern archaeological landscapes. In the last decade, archaeologists have exploited free-access global digital elevation model (DEM) datasets at medium resolution (i.e., up to 30 m) to map tells on a supra-regional scale and pinpoint tentative tell sites. Instead, the potential of satellite DEMs at higher resolution for this task was yet to be demonstrated. To this purpose, the 3 m resolution imaging capability allowed by the Italian Space Agency’s COSMO-SkyMed Synthetic Aperture Radar (SAR) constellation in StripMap HIMAGE mode was used in this study to generate DEM products of enhanced resolution to undertake, for the first time, a systematic mapping of tells and archaeological deposits. The demonstration is run at regional scale in the Governorate of Wasit in central Iraq, where the literature suggested a high density of sites, despite knowledge gaps about their location and spatial distribution. Accuracy assessment of the COSMO-SkyMed DEM is provided with respect to the most commonly used SRTM and ALOS World 3D DEMs. Owing to the 10 m posting and the consequent enhanced observation capability, the COSMO-SkyMed DEM proves capable to detect both well preserved and levelled or disturbed tells, standing out for more than 4 m from the surrounding landscape. Through the integration with CORONA KH-4B tiles, 1950s Soviet maps and recent Sentinel-2 multispectral images, the expert-led visual identification and manual mapping in the GIS environment led to localization of tens of sites that were not previously mapped, alongside the computation of a figure as up-to-date as February 2019 of the survived tells, with those affected by looting. Finally, this evidence is used to recognize hot-spot areas of potential concern for the conservation of tells. To this purpose, we upgraded the spatial resolution of the observations up to 1 m by using the Enhanced Spotlight mode to collect a bespoke time series. The change detection tests undertaken on selected clusters of disturbed tells prove how a dedicated monitoring activity may allow a regular observation of the impacts due to anthropogenic disturbance (e.g., road and canal constructions or ploughing).


2021 ◽  
Vol 22 (15) ◽  
pp. 8261
Author(s):  
Juraj Piestansky ◽  
Michaela Matuskova ◽  
Ivana Cizmarova ◽  
Dominika Olesova ◽  
Peter Mikus

In the presented study, a capillary electrophoresis-mass spectrometry method combining high separation efficiency and sensitive detection has been developed and validated, for the first time, to quantify branched chain amino acids (valine, isoleucine, leucine) in commercial food and sport supplement samples and human plasma samples. The separations were performed in a bare fused silica capillary. The background electrolyte was composed of 500 mM formic acid with pH 2.0. The plasma sample pretreatment was realized by simple protein precipitation with acetonitrile. Injection of a short zone of highly basic electrolyte before the sample injection and application of the negative pressure on the separation were accompanied by enhanced resolution of the isobaric amino acids—isoleucine and leucine. The developed method was characterized by favorable validation parameters, such as linearity (r2 > 0.99), accuracy and precision, the limit of detection, lower limit of quantification, or robustness. These parameters were more than sufficient for the quantification of branched chain amino acids in various samples. The determined concentrations of branched chain amino acids in food and sports supplements were in very good agreement with the content declared by the manufacturer. The investigated concentrations of branched chain amino acids were in the range 294.68–359.24 µM for valine, 91.76–95.67 µM for isoleucine, and 196.78–251.24 µM for leucine. These concentrations fall within the physiological limits. The developed CE-MS/MS method represents a suitable alternative to traditional approaches used in branched chain amino acid quality control and bioanalysis.


Sign in / Sign up

Export Citation Format

Share Document