noise equivalent power
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 3)

Author(s):  
Hiroshi Ito ◽  
Norihiko Shibata ◽  
Tadao Nagatsuma ◽  
Tadao Ishibashi

Abstract We developed a novel terahertz-wave detector fabricated on a SiC platform implementing an InP/InGaAs Fermi-level managed barrier (FMB) diode. The FMB diode epi-layers were transferred on a SiC substrate, and a waveguide coupler and filters were monolithically integrated with an FMB diode. Then, fabricated detector chip was assembled in a fundamental mixer module with a WR-3 rectangular-waveguide input port. It exhibited a minimum noise equivalent power as low as 3e-19 W/Hz at around 300 GHz for a local oscillator power of only 30 microwatts.


2021 ◽  
Author(s):  
Ross W. Millar ◽  
Jaroslaw Kirdoda ◽  
Fiona E. Thorburn ◽  
Xin Yi ◽  
Zoë Greener ◽  
...  

Author(s):  
Jaroslaw Kirdoda ◽  
Ross William Millar ◽  
Fiona Thorburn ◽  
Laura L. Huddleston ◽  
Derek C. S. Dumas ◽  
...  

2021 ◽  
Vol 11 (15) ◽  
pp. 7011
Author(s):  
Oleg V. Minin ◽  
Jaime Calvo-Gallego ◽  
Yahya M. Meziani ◽  
Igor V. Minin

An infrared (IR) pyroelectric detector was investigated for terahertz (THz) detection using the principle of the terajet effect, which focuses the beam beyond the diffraction limit. The terahertz beam was coupled to the detector’s optical window through a two-wavelength-dimension dielectric cubic particle-lens based on the terajet effect. We experimentally demonstrate an enhancement of about 6 dB in the sensitivity under excitation of 0.2 THz without degradation of the noise equivalent power value. The results show that the proposed method could be applied to increase the sensitivity of various commercial IR sensors for THz applications that do not require modification of the internal structure, and it may apply also to acoustics and plasmonic detectors.


Author(s):  
Ross W. Millar ◽  
Jaroslaw Kirdoda ◽  
Fiona Thorburn ◽  
Laura L. Huddleston ◽  
Derek C. S. Dumas ◽  
...  

2021 ◽  
Vol 11 (10) ◽  
pp. 4608
Author(s):  
Ian Jasper Agulo ◽  
Leonid Kuzmin

We have developed a single-pixel capacitively coupled Cold-Electron Bolometer (CEB) and characterized it in the current-biased regime. The most attractive feature of the CEB is effective electron self-cooling of the absorber, which leads to a lower bolometer noise and higher dynamic range. The bolometer responsivity was measured by determining the voltage response to an applied power through the absorber from a heating current, modulated at frequencies from 35 Hz to 2 kHz. The optimum responsivity of 1.5 × 1010 V/W was measured at a modulation frequency of 35 Hz. The noise equivalent power (NEP) was subsequently obtained from the estimated bolometer noise voltage with respect to the measured bolometer responsivity. The NEP of better 2 × 10−18 W/Hz1/2 was obtained for modulation frequencies greater than 100 Hz. The background power and the bolometer time constant were also estimated from the experimental results. The photon-noise-limited operation of CEB will dominate for a signal power of 10 fW and higher at frequency 80 GHz and higher.


Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 708
Author(s):  
Maurizio Casalino

In this work a new concept of silicon resonant cavity enhanced photodetector working at 1550 nm has been theoretically investigated. The absorption mechanism is based on the internal photoemission effect through a graphene/silicon Schottky junction incorporated into a silicon-based Fabry–Pérot optical microcavity whose input mirror is constituted by a double silicon-on-insulator substrate. As output mirror we have investigated two options: a distributed Bragg reflector constituted by some periods of silicon nitride/hydrogenated amorphous silicon and a metallic gold reflector. In addition, we have investigated and compared two configurations: one where the current is collected in the transverse direction with respect to the direction of the incident light, the other where it is collected in the longitudinal direction. We show that while the former configuration is characterized by a better responsivity, spectral selectivity and noise equivalent power, the latter configuration is superior in terms of bandwidth and responsivity × bandwidth product. Our results show responsivity of 0.24 A/W, bandwidth in GHz regime, noise equivalent power of 0.6 nW/cm√Hz and full with at half maximum of 8.5 nm. The whole structure has been designed to be compatible with silicon technology.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Leonardo Viti ◽  
Alisson R. Cadore ◽  
Xinxin Yang ◽  
Andrei Vorobiev ◽  
Jakob E. Muench ◽  
...  

AbstractUltrafast and sensitive (noise equivalent power <1 nW Hz−1/2) light-detection in the terahertz (THz) frequency range (0.1–10 THz) and at room-temperature is key for applications such as time-resolved THz spectroscopy of gases, complex molecules and cold samples, imaging, metrology, ultra-high-speed data communications, coherent control of quantum systems, quantum optics and for capturing snapshots of ultrafast dynamics, in materials and devices, at the nanoscale. Here, we report room-temperature THz nano-receivers exploiting antenna-coupled graphene field effect transistors integrated with lithographically-patterned high-bandwidth (∼100 GHz) chips, operating with a combination of high speed (hundreds ps response time) and high sensitivity (noise equivalent power ≤120 pW Hz−1/2) at 3.4 THz. Remarkably, this is achieved with various antenna and transistor architectures (single-gate, dual-gate), whose operation frequency can be extended over the whole 0.1–10 THz range, thus paving the way for the design of ultrafast graphene arrays in the far infrared, opening concrete perspective for targeting the aforementioned applications.


2020 ◽  
Vol 19 (01) ◽  
pp. 2092001
Author(s):  
B. Afkhami Aghda ◽  
A. Moftakharzadeh ◽  
M. Hosseini

Sign in / Sign up

Export Citation Format

Share Document