malate transporter
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 15)

H-INDEX

15
(FIVE YEARS 1)

BIOCELL ◽  
2022 ◽  
Vol 46 (5) ◽  
pp. 1347-1356
Author(s):  
QUANWEI LU ◽  
YUZHEN SHI ◽  
RUILI CHEN ◽  
XIANGHUI XIAO ◽  
PENGTAO LI ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Wenxiu Ye ◽  
Shota Koya ◽  
Yuki Hayashi ◽  
Huimin Jiang ◽  
Takaya Oishi ◽  
...  

Stomatal guard cells (GCs) are highly specialized cells that respond to various stimuli, such as blue light (BL) and abscisic acid, for the regulation of stomatal aperture. Many signaling components that are involved in the stomatal movement are preferentially expressed in GCs. In this study, we identified four new such genes in addition to an aluminum-activated malate transporter, ALMT6, and GDSL lipase, Occlusion of Stomatal Pore 1 (OSP1), based on the expression analysis using public resources, reverse transcription PCR, and promoter-driven β-glucuronidase assays. Some null mutants of GC-specific genes evidenced altered stomatal movement. We further investigated the role played by ALMT6, a vacuolar malate channel, in stomatal opening. Epidermal strips from an ALMT6-null mutant exhibited defective stomatal opening induced by BL and fusicoccin, a strong plasma membrane H+-ATPase activator. The deficiency was enhanced when the assay buffer [Cl–] was low, suggesting that malate and/or Cl– facilitate efficient opening. The results indicate that the GC-specific genes are frequently involved in stomatal movement. Further detailed analyses of the hitherto uncharacterized GC-specific genes will provide new insights into stomatal regulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi-Fang Zhu ◽  
Jinliang Guo ◽  
Yang Zhang ◽  
Chao-Feng Huang

The C2H2-type zinc finger transcription factor SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) plays a critical role in aluminum (Al) resistance and low phosphate (Pi) response mainly through promoting the expression of the malate transporter-encoding gene ARABIDOPSIS THALIANA ALUMINUM ACTIVATED MALATE TRANSPORTER 1 (AtALMT1). We previously showed that REGULATION OF ATALMT1 EXPRESSION 3 (RAE3/HPR1), a core component of the THO/TREX complex, is involved in the regulation of nucleocytoplasmic STOP1 mRNA export to modulate Al resistance and low Pi response. Here, we report that RAE2/TEX1, another core component of the THO complex, is also involved in the regulation of Al resistance and low Pi response. Mutation of RAE2 reduced the expression of STOP1-downstream genes, including AtALMT1. rae2 was less sensitive to Al than rae3, which was consistent with less amount of malate secreted from rae3 roots than from rae2 roots. Nevertheless, low Pi response was impaired more in rae2 than in rae3, suggesting that RAE2 also regulates AtALMT1-independent pathway to modulate low Pi response. Furthermore, unlike RAE3 that regulates STOP1 mRNA export, mutating RAE2 did not affect STOP1 mRNA accumulation in the nucleus, although STOP1 protein level was reduced in rae2. Introduction of rae1 mutation into rae2 mutant background could partially recover the deficient phenotypes of rae2. Together, our results demonstrate that RAE2 and RAE3 play overlapping but distinct roles in the modulation of Al resistance and low Pi response.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yao Zhang ◽  
Qing Liu ◽  
Pengcheng Li ◽  
Yanxia Wang ◽  
Shaoqi Li ◽  
...  

AbstractIn our previous work, we reported a novel approach for increasing lipid production in an oleaginous fungus Mucor circinelloides by overexpression of mitochondrial malate transporter protein. This transporter plays a vital role in fatty acid biosynthesis during malate and citrate transport systems in oleaginous fungi. In this study, the controlling metabolic supplementation strategy was used to improve the lipid production by overexpression of malate transporter protein in M. circinelloides strain coded as Mc-MT-2. The effects of different metabolic intermediates on lipid production in batch fermentation by Mc-MT-2 were investigated. The optimal lipid production was obtained at 0.8% malic acid after 24 h of fermentation. Furthermore, in fed-batch bioreactors containing glucose as a carbon source supplemented with malic acid, the highest cell growth, and lipid production were achieved. The resulting strain showed the fungal dry biomass of 16 g/L, a lipid content of 32%, lipid yield of 5.12 g/L in a controlled bench-top bioreactor, with 1.60-, 1.60- and 2.56-fold improvement, respectively, compared with the batch control without supplementation of malic acid. Our findings revealed that the addition of malic acid during fermentation might play an important role in lipid accumulation in the recombinant M. circinelloides Mc-MT-2. This study provides valuable insights for enhanced microbial lipid production through metabolic supplementation strategy in large scale and industrial applications.


2020 ◽  
Author(s):  
Jie Ye ◽  
Xin Wang ◽  
Wenqian Wang ◽  
Huiyang Yu ◽  
Guo Ai ◽  
...  

Abstract Tomato (Solanum lycopersicum) is a highly valuable vegetable crop and yield is one of the most important traits. Uncovering the genetic architecture of yield-related traits in tomato is critical for the management of vegetative and reproductive development, thereby enhancing yield. Here we perform a comprehensive genome-wide association study for 27 yield-related traits in tomato. A total of 239 significant associations corresponding to 129 loci, harboring many reported and novel genes related to vegetative and reproductive development, were identified, and these loci explained an average of ~8.8% of the phenotypic variance. A total of 51 loci associated with 25 traits have been under selection, especially during tomato improvement. Furthermore, a candidate gene, SlALMT15 that encodes an aluminum-activated malate transporter, was functionally characterized and shown to act as a pivotal regulator of leaf stomata formation through increasing photosynthesis and drought resistance. This study provides valuable information for tomato genetic research and breeding.


2020 ◽  
Author(s):  
Jie Ye ◽  
Xin Wang ◽  
Wenqian Wang ◽  
Huiyang Yu ◽  
Guo Ai ◽  
...  

ABSTRACTTomato (Solanum lycopersicum) is a highly valuable vegetable crop and yield is one of the most important traits. Uncovering the genetic architecture of yield-related traits in tomato is critical for the management of vegetative and reproductive development, thereby enhancing yield. Here we perform a comprehensive genome-wide association study for 27 yield-related traits in tomato. A total of 239 significant associations corresponding to 129 loci, harboring many reported and novel genes related to vegetative and reproductive development, were identified, and these loci explained an average of ∼8.8% of the phenotypic variance. A total of 51 loci associated with 25 traits have been under selection, especially during tomato improvement. Furthermore, a candidate gene, SlALMT15 that encodes an aluminum-activated malate transporter, was functionally characterized and shown to act as a pivotal regulator of leaf stomata formation through increasing photosynthesis and drought resistance. This study provides valuable information for tomato genetic research and breeding.


Author(s):  
Shirin Zamani-Nour ◽  
Hsiang-Chun Lin ◽  
Berkley J Walker ◽  
Tabea Mettler-Altmann ◽  
Roxana Khoshravesh ◽  
...  

Abstract The chloroplastic 2-oxaloacetate (OAA)/malate transporter (OMT1 or DiT1) takes part in the malate valve that protects chloroplasts from excessive redox poise through export of malate and import of OAA. Together with the glutamate/malate transporter (DCT1 or DiT2), it connects carbon with nitrogen assimilation, by providing 2-oxoglutarate for the GS/GOGAT (glutamine synthetase/glutamate synthase) reaction and exporting glutamate to the cytoplasm. OMT1 further plays a prominent role in C4 photosynthesis: OAA resulting from phosphoenolpyruvate carboxylation is imported into the chloroplast, reduced to malate by plastidic NADP-malate dehydrogenase, and then exported for transport to bundle sheath cells. Both transport steps are catalyzed by OMT1, at the rate of net carbon assimilation. To engineer C4 photosynthesis into C3 crops, OMT1 must be expressed in high amounts on top of core C4 metabolic enzymes. We report here high-level expression of ZmOMT1 from maize in rice (Oryza sativa ssp. indica IR64). Increased activity of the transporter in transgenic rice was confirmed by reconstitution of transporter activity into proteoliposomes. Unexpectedly, overexpression of ZmOMT1 in rice negatively affected growth, CO2 assimilation rate, total free amino acid content, tricarboxylic acid cycle metabolites, as well as sucrose and starch contents. Accumulation of high amounts of aspartate and the impaired growth phenotype of OMT1 rice lines could be suppressed by simultaneous overexpression of ZmDiT2. Implications for engineering C4 rice are discussed.


2020 ◽  
Author(s):  
Shirin Zamani-Nour ◽  
Hsiang-Chun Lin ◽  
Berkley J. Walker ◽  
Tabea Mettler-Altmann ◽  
Roxana Khoshravesh ◽  
...  

AbstractThe chloroplastic oxaloacetate/malate transporter (OMT1 or DiT1) takes part in the malate valve that protects chloroplasts from excessive redox poise through export of malate and import of oxaloacetate (OAA). Together with the glutamate/malate transporter (DCT1 or DiT2), it connects carbon with nitrogen assimilation, by providing α-ketoglutarate for the GS/GOGAT reaction and exporting glutamate to the cytoplasm. OMT1 further plays a prominent role in C4 photosynthesis. OAA resulting from PEP-carboxylation is imported into the chloroplast, reduced to malate by plastidic NADP-MDH, and then exported for transport to bundle sheath cells. Both transport steps are catalyzed by OMT1, at the rate of net carbon assimilation. Therefore, to engineer C4 photosynthesis into C3 crops, OMT1 must be expressed in high amounts on top of core C4 metabolic enzymes. We report here high-level expression of ZmOMT1 from maize in rice (Oryza sativa ssp. indica IR64). Increased activity of the transporter in transgenic rice was confirmed by reconstitution of transporter activity into proteoliposomes. Unexpectedly, over-expression of ZmOMT1 in rice negatively affected growth, CO2 assimilation rate, total free amino acid contents, TCA cycle metabolites, as well as sucrose and starch contents. Accumulation of high amounts of aspartate and the impaired growth phenotype of OMT1 rice lines could be suppressed by simultaneous over-expression of ZmDiT2. Implications for engineering C4-rice are discussed.


2020 ◽  
Vol 71 (12) ◽  
pp. 3437-3449
Author(s):  
Qi-Jun Ma ◽  
Mei-Hong Sun ◽  
Jing Lu ◽  
Da-Gang Hu ◽  
Hui Kang ◽  
...  

Abstract Heavy metal contamination is a major environmental and human health hazard in many areas of the world. Organic acids sequester heavy metals and protect plant roots from the effects of toxicity; however, it is largely unknown how these acids are regulated in response to heavy metal stress. Here, protein kinase SOS2L1 from apple was functionally characterized. MdSOS2L1 was found to be involved in the regulation of malate excretion, and to inhibit cadmium uptake into roots. Using the DUAL membrane system in a screen of an apple cDNA library with MdSOS2L1 as bait, a malate transporter, MdALMT14, was identified as an interactor. Bimolecular fluorescence complementation, pull-down, and co-immunoprecipitation assays further indicated the interaction of the two proteins. Transgenic analyses showed that MdSOS2L1 is required for cadmium-induced phosphorylation at the Ser358 site of MdALMT14, a modification that enhanced the stability of the MdALMT14 protein. MdSOS2L1 was also shown to enhance cadmium tolerance in an MdALMT14-dependent manner. This study sheds light on the roles of the MdSOS2L1–MdALMT14 complex in physiological responses to cadmium toxicity.


Sign in / Sign up

Export Citation Format

Share Document