reactive nitrogen oxides
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 2)

H-INDEX

16
(FIVE YEARS 1)

2020 ◽  
Vol 12 (14) ◽  
pp. 2210 ◽  
Author(s):  
Francisco-Javier Mesas-Carrascosa ◽  
Fernando Pérez Porras ◽  
Paula Triviño-Tarradas ◽  
Alfonso García-Ferrer ◽  
Jose Emilio Meroño-Larriva

The disease caused by SARS-CoV-2 has affected many countries and regions. In order to contain the spread of infection, many countries have adopted lockdown measures. As a result, SARS-CoV-2 has negatively influenced economies on a global scale and has caused a significant impact on the environment. In this study, changes in the concentration of the pollutant Nitrogen Dioxide (NO2) within the lockdown period were examined as well as how these changes relate to the Spanish population. NO2 is one of the reactive nitrogen oxides gases resulting from both anthropogenic and natural processes. One major source in urban areas is the combustion of fossil fuels from vehicles and industrial plants, both of which significantly contribute to air pollution. The long-term exposure to NO2 can also cause severe health problems. Remote sensing is a useful tool to analyze spatial variability of air quality. For this purpose, Sentinel-5P images registered from January to April of 2019 and 2020 were used to analyze spatial distribution of NO2 and its evolution under the lockdown measures in Spain. The results indicate a significant correlation between the population’s activity level and the reduction of NO2 values.


2017 ◽  
Vol 17 (16) ◽  
pp. 10071-10091 ◽  
Author(s):  
Jeffrey A. Geddes ◽  
Randall V. Martin

Abstract. Reactive nitrogen oxides (NOy) are a major constituent of the nitrogen deposited from the atmosphere, but observational constraints on their deposition are limited by poor or nonexistent measurement coverage in many parts of the world. Here we apply NO2 observations from multiple satellite instruments (GOME, SCIAMACHY, and GOME-2) to constrain the global deposition of NOy over the last 2 decades. We accomplish this by producing top-down estimates of NOx emissions from inverse modeling of satellite NO2 columns over 1996–2014, and including these emissions in the GEOS-Chem chemical transport model to simulate chemistry, transport, and deposition of NOy. Our estimates of long-term mean wet nitrate (NO3−) deposition are highly consistent with available measurements in North America, Europe, and East Asia combined (r =  0.83, normalized mean bias  = −7 %, N =  136). Likewise, our calculated trends in wet NO3− deposition are largely consistent with the measurements, with 129 of the 136 gridded model–data pairs sharing overlapping 95 % confidence intervals. We find that global mean NOy deposition over 1996–2014 is 56.0 Tg N yr−1, with a minimum in 2006 of 50.5 Tg N and a maximum in 2012 of 60.8 Tg N. Regional trends are large, with opposing signs in different parts of the world. Over 1996 to 2014, NOy deposition decreased by up to 60 % in eastern North America, doubled in regions of East Asia, and declined by 20 % in parts of western Europe. About 40 % of the global NOy deposition occurs over oceans, with deposition to the North Atlantic Ocean declining and deposition to the northwestern Pacific Ocean increasing. Using the residual between NOx emissions and NOy deposition over specific land regions, we investigate how NOx export via atmospheric transport has changed over the last 2 decades. Net export from the continental United States decreased substantially, from 2.9 Tg N yr−1 in 1996 to 1.5 Tg N yr−1 in 2014. Export from China more than tripled between 1996 and 2011 (from 1.0 to 3.5 Tg N yr−1), before a striking decline to 2.5 Tg N yr−1 by 2014. We find that declines in NOx export from some western European countries have counteracted increases in emissions from neighboring countries to the east. A sensitivity study indicates that simulated NOy deposition is robust to uncertainties in NH3 emissions with a few exceptions. Our novel long-term study provides timely context on the rapid redistribution of atmospheric nitrogen transport and subsequent deposition to ecosystems around the world.


2017 ◽  
Author(s):  
Jeffrey A. Geddes ◽  
Randall V. Martin

Abstract. Reactive nitrogen oxides (NOy) are a major constituent of the nitrogen deposited from the atmosphere, but observational constraints on their deposition are limited by poor or nonexistent measurement coverage in many parts of the world. Here we apply NO2 observations from multiple satellite instruments (GOME, SCIAMACHY, and GOME-2) to constrain the global deposition of NOy over the last two decades. We accomplish this by producing top-down estimates of NOx emissions from inverse modeling of satellite NO2 columns over 1996–2014, and including these emissions in the GEOS-Chem chemical transport model to simulate chemistry, transport, and deposition of NOy. Our estimates of long-term mean wet nitrate (NO3−) deposition are highly consistent with available measurements in North America, Europe, and East Asia combined (r = 0.83, normalized mean bias = −7 %, N = 136). Likewise, our calculated trends in wet NO3− deposition are largely consistent with the measurements, with 129 of the 136 gridded model-data pairs sharing overlapping 95 % confidence intervals. We find that global mean NOy deposition over 1996–2014 is 56.0 Tg N yr−1, with a minimum in 2006 of 50.5 Tg N and a maximum in 2012 of 60.8 Tg N. Regional trends are large, with opposing signs in different parts of the world. Over 1996 to 2014, NOy deposition decreased by up to 60 % in eastern North America, doubled in regions of East Asia, and declined by 20 % in parts of Western Europe. About 40 % of the global NOy deposition occurs over oceans, with deposition to the North Atlantic Ocean declining and deposition to the northwestern Pacific Ocean increasing. Using the residual between NOx emissions and NOy deposition over specific land regions, we investigate how NOx export via atmospheric transport has changed over the last two decades. Net export from the continental United States decreased substantially, from 2.9 Tg N yr−1 in 1996 to 1.5 Tg N yr−1 in 2014. On the other hand, export from China more than tripled between 1996 and 2011 (from 1.0 Tg N yr−1 to 3.5 Tg N yr−1), before a striking decline to 2.5 Tg N yr−1 by 2014. We find that declines in NOx export from some Western European countries have counteracted increases in emissions from neighbouring countries to the east. A sensitivity study indicates that simulated NOy deposition is robust to uncertainties in NH3 emissions with a few exceptions. Our novel long-term study provides timely context on the rapid redistribution of atmospheric nitrogen transport and subsequent deposition to ecosystems around the world.


2016 ◽  
Vol 16 (10) ◽  
pp. 6355-6363 ◽  
Author(s):  
Alyson M. Baergen ◽  
D. James Donaldson

Abstract. Impervious surfaces are ubiquitous in urban environments and constitute a substrate onto which atmospheric constituents can deposit and undergo photochemical and oxidative processing, giving rise to “urban grime” films. HNO3 and N2O5 are important sinks for NOx in the lower atmosphere and may be deposited onto these films, forming nitrate through surface hydrolysis. Although such deposition has been considered as a net loss of NOx from the atmosphere, there is increasing evidence that surface-associated nitrate undergoes further reaction. Here, we examine the gas phase products of the photochemistry of real, field-collected urban grime using incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). Gas phase nitrogen oxides are emitted upon illumination of grime samples and their production increases with ambient relative humidity (RH) up to 35 % after which the production becomes independent of RH. These results are discussed in the context of water uptake onto and evaporation from grime films.


2016 ◽  
Author(s):  
Alyson M. Baergen ◽  
D. James Donaldson

Abstract. Impervious surfaces are ubiquitous in urban environments and constitute a substrate onto which atmospheric constituents can deposit and undergo photochemical and oxidative processing, giving rise to "urban grime" films. HNO3 and N2O5 are important sinks for NOx in the lower atmosphere and may be deposited onto these films, forming nitrate through surface hydrolysis. Although such deposition has been considered as a net loss of NOx from the atmosphere, there is increasing evidence that surface-associated nitrate undergoes further reaction. Here, we examine the gas phase products of the photochemistry of real, field-collected urban grime using incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS). Gas phase nitrogen oxides are emitted upon illumination of grime samples and their production increases with ambient relative humidity (RH) up to 35 % after which the production becomes independent of RH. These results are discussed in the context of water uptake onto and evaporation from grime films.


2016 ◽  
Vol 121 (4) ◽  
pp. 1922-1934 ◽  
Author(s):  
Yuzhong Zhang ◽  
Yuhang Wang ◽  
Gao Chen ◽  
Charles Smeltzer ◽  
James Crawford ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document