island of ischia
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 13)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 51 (4) ◽  
pp. 345-371
Author(s):  
Giovanna BERRINO ◽  
Peter VAJDA ◽  
Pavol ZAHOREC ◽  
Antonio G. CAMACHO ◽  
Vincenzo DE NOVELLIS ◽  
...  

We analyse spatiotemporal gravity changes observed on the Ischia island (Italy) accompanying the destructive earthquake of 21 August 2017. The 29 May 2016 to 22 September 2017 time-lapse gravity changes observed at 18 benchmarks of the Ischia gravimetric network are first corrected for the gravitational effect of the surface deformation using the deformation-induced topographic effect (DITE) correction. The co-seismic DITE is computed by Newtonian volumetric integration using the Toposk software, a high-resolution LiDAR DEM and the co-seismic vertical displacement field derived from Sentinel-1 InSAR data. We compare numerically the DITE field with its commonly used Bouguer approximation over the island of Ischia with the outcome that the Bouguer approximation of DITE is adequate and accurate in this case. The residual gravity changes are then computed at gravity benchmarks by correcting the observed gravity changes for the planar Bouguer effect of the elevation changes at benchmarks over the same period. The residual gravity changes are then inverted using an inversion approach based on model exploration and growing source bodies, making use of the Growth-dg inversion tool. The found inversion model, given as subsurface time-lapse density changes, is then interpreted as mainly due to a co-seismic or post-seismic disturbance of the hydrothermal system of the island. Pros and weak points of such interpretation are discussed.


2021 ◽  
Vol 65 (3) ◽  
pp. 230-234
Author(s):  
Mauro Salducci ◽  
Francesco Maiorano ◽  
Carmen Rachele Maione ◽  
Concetta Nappi ◽  
Marzio Di Meglio

2021 ◽  
Author(s):  
Stefano Carlino

Abstract. The presence of three active volcanoes (Vesuvius, Campi Flegrei and Ischia Island) along the coast of Naples did not constrained the huge expansion of the urbanized zones around them. On the contrary, since Greek-Roman era, volcanoes have been an attractor for people who colonized Campania region. Stable settlements around Vesuvius, Campi Flegrei caldera and the Island of Ischia were progressively enlarged, reaching the maximum growth-rate between 1950 and 1980. Between 1982 and 1984, Neapolitan people faced the last and most dramatic volcanic crises, occurred at Campi Flegrei (Pozzuoli), without an eruption. Since that time, volcanologists have focused the attention on the problem of risk associated to eruptions in Neapolitan area, but a systematic strategy to reduce the very high volcanic risk of this area still lacks. A brief history of volcanic risk in Neapolitan district is here reported, trying to obtain new food for thought for the scientific community which works to the mitigation of volcanic risk of this area.


Author(s):  
Stefano Carlino ◽  
Nicola Alessandro Pino ◽  
Anna Tramelli ◽  
Vincenzo De Novellis ◽  
Vincenzo Convertito

AbstractThe island of Ischia, located in the Gulf of Naples, represents an unusual case of resurgent caldera where small-to-moderate magnitude volcano-tectonic earthquakes generate large damage and catastrophic effects, as in the case of 4 March 1881 (Imax-VIII-IXMCS) and 28 July 1883 (Imax X-XI MCS) historical earthquakes, and of the recent 21 August 2017 MW = 3.9, event. All these earthquakes struck the northern area of the island. With about 65,000 inhabitants, Ischia is a popular touristic destination for thermals baths, hosting more than 3,000,000 visitors per year, thus representing a high seismic risk area. Assessing its seismic potential appears a fundamental goal and, to this end, the estimate of the magnitude of significant historical events and the characterization of their source are crucial. We report here a reassessment of historical data of damage of 1881 and 1883 earthquakes to evaluate the main source parameters of these events (obtained with the BOXER and EXISM software) and quantitatively compare, for the first time, the results with the source characteristics, obtained from instrumental data, of the recent 2017 earthquake. The results allowed us to assess the location, as well as the possible dimension and the related maximum magnitude, of the seismogenic structure responsible for such damaging earthquakes. Our results also provide an additional framework to define the mechanisms leading to earthquakes associated with the dynamics of calderas.


Geothermics ◽  
2021 ◽  
Vol 89 ◽  
pp. 101977
Author(s):  
Roberto Parri ◽  
Paolo Basile ◽  
Lorenzo Favaro ◽  
Tiziana Mazzoni ◽  
Stefano Orlando

2021 ◽  
Vol 10 (1) ◽  
pp. 91-102
Author(s):  
Luca Tiberti ◽  
Gianluca Iacono ◽  
Maria Cristina Gambi ◽  
Anna Maria Mannino

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2576
Author(s):  
Vincenzo Piscopo ◽  
Fulvio Formica ◽  
Luigi Lana ◽  
Francesca Lotti ◽  
Luigi Pianese ◽  
...  

The thermal waters of the Island of Ischia, an active volcano located in Southern Italy, are widely used for supplying numerous spas. Groundwater withdrawals occur mainly through wells in the coastal strip. This study explores the impact of withdrawals on the quality of the waters used in thermal facilities, which is required to be constant in terms of composition and temperature by law. For this purpose, specific investigations were conducted including 155 pumping tests, 124 water temperature measurements during pumping tests, 31 temperature and electrical conductivity logs and periodic chemical analysis of the waters of 21 selected wells. By comparing the response to pumping of the aquifer and the quality of the water extracted from the wells, it turned out that the quality of groundwater supplying spas depends not only on natural phenomena (meteoric recharge, seawater intrusion, and rising of deep hydrothermal fluids) but also relies on the island sector where groundwater is pumped and on the pumping method. The distance of the wells from the coast, the type of aquifer formation intersected by the wells, and the field of groundwater temperature of the hydrothermal system strongly affect the aquifer pumping response, determining the quality of water extracted from wells and its variation over time. In Ischia, techniques and regimes of groundwater withdrawals should adapt to the local aquifer pumping response, more than in another hydrogeological context. The concomitant analysis of drawdown, water temperature, and salinity during pumping turned out to be a valuable tool to define the sustainable yield of the single well.


2020 ◽  
Author(s):  
Stefano Carlino ◽  
Vincenzo Convertito ◽  
Anna Tramelli ◽  
Vincenzo De Novellis ◽  
Nicola Alessandro Pino

<p>We report here a first comparative analysis between recent and historical earthquakes, occurred in the island of Ischia (Southern Italy), which produced heavy damages and thousands of fatalities. The island of Ischia is located in the Gulf of Naples, and represents a peculiar case of resurgent caldera in which volcano-tectonic earthquakes, with low magnitude, have generated large damages and catastrophic effects, as is the case for the 4 March 1881 (I<sub>max</sub>8-9 MCS) and the 28 July 1883 (I<sub>max</sub>10-11 MCS) events. Both the earthquakes struck the northern area of the island, similarly to the recent 21 August 2017 earthquake. The results allowed us to assess the location, as well as the possible dimension and the related maximum magnitude of the seismogenic structure, located in the northern sector of the island, and responsible of damaging earthquakes. Our results also provide an additional framework to interpret mechanisms leading to earthquakes associated with dynamics of calderas.</p><p> </p>


2020 ◽  
Author(s):  
Sandro de Vita ◽  
Mauro A. Di Vito ◽  
Enrica Marotta ◽  
Rosario Avino ◽  
Antonio Carandente ◽  
...  

<p>The volcanic system of Ischia is characterized by an intense hydrothermal activity, documented since the early 16th century by the study of Iasolino (1588), which represents the first systematic analysis of the thermal springs of the island for therapeutic purposes. Later studies partially contributed to the enhancement of knowledge on the volcanic, hydrogeological and hydrothermal features of the island, highlighting the strong interaction between hydrothermal flowpaths and volcano-tectonic processes . The reconstruction of the hydrothermal system becomes, therefore, a fundamental element for territorial planning, not only in terms of management of the huge water and geothermal resource, but also and above all in a perspective of prevention and mitigation of volcanic risk. Thermal springs, fumaroles and clay deposits due to the hydrothermal alteration of volcanic products testifies for the existence of an active deep hydrothermal system. Commonly, the geochemical characterization of fluids and groundwater has been used for the definition of the origin and structure of hydrothermal systems, when hydrogeological information is incomplete. However, volcanic hydrothermal systems, such as that characterizes the island of Ischia, are particularly difficult to analyze and outline, as the groundwater resources are the result of an articulated and dynamic interaction among meteoric water, sea water and fluids of deep origin. In such cases, the need for an interdisciplinary approach is evident, involving knowledge and research methods ranging from geology to volcanology, geophysics, geochemistry and hydrogeology. With particular reference to the functional and structural representation of the geothermal system of the island of Ischia and the resulting correlations with the volcano-tectonic processes, the examination of previous information highlights the need to update and improve the knowledge on groundwater hydrodynamics and mineralization processes.</p><p>Therefore, this study represents the result of  a strong interdisciplinary action that, starting from the design and implementation of a database on the existing geological/volcanological and hydrogeological information, contributes to highlight the critical issues, defines an operating scheme of the hydro-geo-thermal system of the island of Ischia, and aims at upgrade its hydrogeological, geochemical and volcanic monitoring system, in order to contribute to the mitigation of natural risks.</p><p>Moreover, this study well fits into the framework of the ongoing researches on volcanic hazard at Ischia and is integrated with the actions planned by the Italian Department of Civil Defense. The knowledge of groundwater dynamics and pathways is of fundamental importance for understanding the water/magma interaction processes in case of re-alimentation of the shallow magmatic system, and the assessment of the possibility of phreatic explosions occurrence.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document