Many an introductory or general overview of the biology of mutation begins with the phrase “mutation is the ultimate source of genetic variation.” In the absence of mutation, one genome sequence would eventually become fixed in every species, recombination would become irrelevant, and evolution would grind to a halt. Thus, metaphorically, mutation is the fuel of evolution. To begin, it is important to define what is meant by “mutation.” For the purposes of this article, mutation is defined as the condition in which homologous DNA sequence differs between the parent cell at its origin and the daughter cell at its origin. Of primary interest are those mutations that are heritable across generations. Mutations result either from errors during replication that are not repaired, or damage to nonreplicating DNA that is not repaired prior to the next round of replication. Both of those points of control admit many sources of variation. In this article, mutation is considered in two contexts. First, papers that investigate causes of variation in the mutational process, and second, papers that investigate consequences of variation in the mutational process. The former includes theoretical investigations of the evolution of the mutation rate, as well as empirical studies of variation in the rate and molecular spectrum of mutation within genomes and between individuals and higher taxa. The latter category includes both theoretical and empirical studies of how variation in either the rate or spectrum of mutation affects the phenotype, and especially fitness. The focus is broad, including classical one- and two-locus population genetics, modern sequence-based population genetics, molecular genetics, and quantitative genetics. Theoretical studies are overrepresented, and empirical studies are bimodally distributed, with modes at the old (“classical”) and very recent (“state of the art”).