mutational process
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 22)

H-INDEX

10
(FIVE YEARS 3)

Author(s):  
Zedong Jiang ◽  
Gaoming Liao ◽  
Yiran Yang ◽  
Yujia Lan ◽  
Liwen Xu ◽  
...  

Somatic mutations accumulate over time in cancer cells as a consequence of mutational processes. However, the role of mutational processes in carcinogenesis remains poorly understood. Here, we infer the causal relationship between mutational processes and somatic mutations in 5,828 samples spanning 34 cancer subtypes. We found most mutational processes cause abundant recurrent mutations in cancer genes, while exceptionally ultraviolet exposure and altered activity of the error-prone polymerase bring a large number of recurrent non-driver mutations. Furthermore, some mutations are specifically induced by a certain mutational process, such as IDH1 p.R132H which is mainly caused by spontaneous deamination of 5-methylcytosine. At the pathway level, clock-like mutational processes extensively trigger mutations to dysregulate cancer signal transduction pathways. In addition, APOBEC mutational process destroys DNA double-strand break repair pathway, and bladder cancer patients with high APOBEC activity, though with homologous recombination proficient, show a significantly longer overall survival with platinum regimens. These findings help to understand how mutational processes act on the genome to promote carcinogenesis, and further, presents novel insights for cancer prevention and treatment, as our results showing, APOBEC mutagenesis and HRD synergistically contributed to the clinical benefits of platinum-based treatment.


GigaScience ◽  
2021 ◽  
Vol 10 (10) ◽  
Author(s):  
Susanne P Pfeifer

Abstract This commentary investigates the important role of computational pipeline and parameter choices in performing mutation rate estimation, using the recent article published in this journal by Bergeron et al. entitled “The germline mutational process in rhesus macaque and its implications for phylogenetic dating” as an illustrative example.


2021 ◽  
Author(s):  
Moein Rajaei ◽  
Ayush Shekhar Saxena ◽  
Lindsay M. Johnson ◽  
Michael C. Snyder ◽  
Timothy A. Crombie ◽  
...  

Important clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the laboratory as in nature. The base-substitution spectrum differs between C. elegans laboratory mutation accumulation (MA) experiments and the standing site-frequency spectrum, which has been argued to be in part owing to increased oxidative stress in the laboratory environment. Using genome sequence data from C. elegans MA lines carrying a mutation (mev-1) that increases the cellular titer of reactive oxygen species (ROS), leading to increased oxidative stress, we find the base-substitution spectrum is similar between mev-1, its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). Conversely, the rate of short insertions is greater in mev-1, consistent with studies in other organisms in which environmental stress increased the rate of insertion–deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are different from those of nonmononucleotide sequence, both for indels and base-substitutions, and whereas the nonmononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different, with a greater frequency of A:T → T:A transversions and an increased proportion of ±1-bp indels. The discrepancy in mutational spectra between laboratory MA experiments and natural variation is likely owing to a consistent (but unknown) effect of the laboratory environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.


2021 ◽  
Vol 11 ◽  
Author(s):  
Davide Bagnara ◽  
Catherine Tang ◽  
Jennifer R. Brown ◽  
Siddha Kasar ◽  
Stacey Fernandes ◽  
...  

Analyses of IGHV gene mutations in chronic lymphocytic leukemia (CLL) have had a major impact on the prognostication and treatment of this disease. A hallmark of IGHV-mutation status is that it very rarely changes clonally over time. Nevertheless, targeted and deep DNA sequencing of IGHV-IGHD-IGHJ regions has revealed intraclonal heterogeneity. We used a DNA sequencing approach that achieves considerable depth and minimizes artefacts and amplification bias to identify IGHV-IGHD-IGHJ subclones in patients with prolonged temporal follow-up. Our findings extend previous studies, revealing intraclonal IGHV-IGHD-IGHJ diversification in almost all CLL clones. Also, they indicate that some subclones with additional IGHV-IGHD-IGHJ mutations can become a large fraction of the leukemic burden, reaching numerical criteria for monoclonal B-cell lymphocytosis. Notably, the occurrence and complexity of post-transformation IGHV-IGHD-IGHJ heterogeneity and the expansion of diversified subclones are similar among U-CLL and M-CLL patients. The molecular characteristics of the mutations present in the parental, clinically dominant CLL clone (CDC) differed from those developing post-transformation (post-CDC). Post-CDC mutations exhibit significantly lower fractions of mutations bearing signatures of activation induced deaminase (AID) and of error-prone repair by Polη, and most of the mutations were not ascribable to those enzymes. Additionally, post-CDC mutations displayed a lower percentage of nucleotide transitions compared with transversions that was also not like the action of AID. Finally, the post-CDC mutations led to significantly lower ratios of replacement to silent mutations in VH CDRs and higher ratios in VH FRs, distributions different from mutations found in normal B-cell subsets undergoing an AID-mediated process. Based on these findings, we propose that post-transformation mutations in CLL cells either reflect a dysfunctional standard somatic mutational process or point to the action of another mutational process not previously associated with IG V gene loci. If the former option is the case, post-CDC mutations could lead to a lesser dependence on antigen dependent BCR signaling and potentially a greater influence of off-target, non-IG genomic mutations. Alternatively, the latter activity could add a new stimulatory survival/growth advantage mediated by the BCR through structurally altered FRs, such as that occurring by superantigen binding and stimulation.


2021 ◽  
Author(s):  
Eva G Alvarez ◽  
Jonas Demeulemeester ◽  
Clemency Jolly ◽  
Daniel Garcia-Souto ◽  
Paula Otero ◽  
...  

Most cancers are characterized by the somatic acquisition 52 of genomic rearrangements during tumour evolution that eventually drive the oncogenesis. There are different mutational mechanisms causing structural variation, some of which are specific to particular cancer types. Here, using multiplatform sequencing technologies, we identify and characterize a remarkable mutational mechanism in human hepatocellular carcinoma caused by Hepatitis B virus, by which DNA molecules from the virus are inserted into the tumour genome causing dramatic changes in its configuration, including non-homologous chromosomal fusions and megabase-size telomeric deletions. This aberrant mutational process, present in at least 8% of all HCC tumours, is active early during liver cancer evolution and can provide the driver rearrangements that a cancer clone requires to survive and grow.


Author(s):  
Charles F. Baer

Many an introductory or general overview of the biology of mutation begins with the phrase “mutation is the ultimate source of genetic variation.” In the absence of mutation, one genome sequence would eventually become fixed in every species, recombination would become irrelevant, and evolution would grind to a halt. Thus, metaphorically, mutation is the fuel of evolution. To begin, it is important to define what is meant by “mutation.” For the purposes of this article, mutation is defined as the condition in which homologous DNA sequence differs between the parent cell at its origin and the daughter cell at its origin. Of primary interest are those mutations that are heritable across generations. Mutations result either from errors during replication that are not repaired, or damage to nonreplicating DNA that is not repaired prior to the next round of replication. Both of those points of control admit many sources of variation. In this article, mutation is considered in two contexts. First, papers that investigate causes of variation in the mutational process, and second, papers that investigate consequences of variation in the mutational process. The former includes theoretical investigations of the evolution of the mutation rate, as well as empirical studies of variation in the rate and molecular spectrum of mutation within genomes and between individuals and higher taxa. The latter category includes both theoretical and empirical studies of how variation in either the rate or spectrum of mutation affects the phenotype, and especially fitness. The focus is broad, including classical one- and two-locus population genetics, modern sequence-based population genetics, molecular genetics, and quantitative genetics. Theoretical studies are overrepresented, and empirical studies are bimodally distributed, with modes at the old (“classical”) and very recent (“state of the art”).


2021 ◽  
Author(s):  
Moein Rajaei ◽  
Ayush Shekhar Saxena ◽  
Lindsay M. Johnson ◽  
Michael C. Snyder ◽  
Timothy A. Crombie ◽  
...  

AbstractImportant clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the lab as in nature. The ratio of transitions to transversions (Ts/Tv) is consistently lower in C. elegans mutation accumulation (MA) experiments than in nature, which has been argued to be in part due to increased oxidative stress in the lab environment. Using whole-genome sequence data from a set of C. elegans MA lines carrying a mutation (mev-1) that increases the cellular titer of reactive oxygen species (ROS), leading to increased endogenous oxidative stress, we find that the base-substitution spectrum is similar between mev-1 lines, its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). By contrast, the rate of short insertions is greater in the mev-1 lines, consistent with studies in other organisms in which environmental stress led to an increase in the rate of insertion-deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are qualitatively different from those of non-mononucleotide sequence, both for indels and base-substitutions, and whereas the non-mononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different. The discrepancy in mutational spectra between lab MA experiments and natural variation is likely due to a consistent (but unknown) effect of the lab environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.


2021 ◽  
Vol 8 (2) ◽  
pp. 201532
Author(s):  
Alessandro Esposito

Most tumours exhibit significant heterogeneity and are best described as communities of cellular populations competing for resources. Growing experimental evidence also suggests that cooperation between cancer clones is important as well for the maintenance of tumour heterogeneity and tumour progression. However, a role for cell communication during the earliest steps in oncogenesis is not well characterized despite its vital importance in normal tissue and clinically manifest tumours. Here, we present a simple analytical model and stochastic lattice-based simulations to study how the interaction between the mutational process and cell-to-cell communication in three-dimensional tissue architecture might contribute to shape early oncogenesis. We show that non-cell-autonomous mechanisms of carcinogenesis could support and accelerate pre-cancerous clonal expansion through the cooperation of different, non- or partially transformed mutants. We predict the existence of a ‘cell-autonomous time horizon', a time before which cooperation between cell-to-cell communication and DNA mutations might be one of the most fundamental forces shaping the early stages of oncogenesis. The understanding of this process could shed new light on the mechanisms leading to clinically manifest cancers.


2020 ◽  
Author(s):  
Hu Fang ◽  
Xiaoqiang Zhu ◽  
Jieun Oh ◽  
Jayne A. Barbour ◽  
Jason W. H. Wong

AbstractDNA mismatch repair (MMR) is essential for maintaining genome integrity with its deficiency predisposing to cancer1. MMR is well known for its role in the post-replicative repair of mismatched base pairs that escape proofreading by DNA polymerases following cell division2. Yet, cancer genome sequencing has revealed that MMR deficient cancers not only have high mutation burden but also harbour multiple mutational signatures3, suggesting that MMR has pleotropic effects on DNA repair. The mechanisms underlying these mutational signatures have remained unclear despite studies using a range of in vitro4,5 and in vivo6 models of MMR deficiency. Here, using mutation data from cancer genomes, we identify a previously unknown function of MMR, showing that the loss of non-canonical replication-independent MMR activity is a major mutational process in human cancers. MMR is comprised of the MutSα (MSH2/MSH6) and MutLα (MLH1/PMS2) complexes7. Cancers with deficiency of MutSα exhibit mutational signature contributions distinct from those deficient of MutLα. This disparity is attributed to mutations arising from the unrepaired deamination of 5-methylcytosine (5mC), i.e. methylation damage, as opposed to replicative errors by DNA polymerases induced mismatches. Repair of methylation damage is strongly associated with H3K36me3 chromatin but independent of binding of MBD4, a DNA glycosylase that recognise 5mC and can repair methylation damage. As H3K36me3 recruits MutSα, our results suggest that MutSα is the essential factor in mediating the repair of methylation damage. Cell line models of MMR deficiency display little evidence of 5mC deamination-induced mutations as their rapid rate of proliferation limits for the opportunity for methylation damage. We thus uncover a non-canonical role of MMR in the protection against methylation damage in non-dividing cells.


2020 ◽  
Vol 26 ◽  
pp. 29-35
Author(s):  
I. M. Gudkov

To the 120th anniversary of the birth, information about the basic dates of life and creativity, as well as about the basic scientific achievements of the outstanding biologist Nikolay W. Timofeeff-Resovsky (1900–1981) is presented. The data on his contribution to genetics, radiation biology, ecology, the doctrine of microevolutionary processes are given. His works have played a major role in the development of molecular-physical approaches to the problems of genetics. He is regarded as one of the founders of radiation and population genetics. He is one of first who used the ionizing radiation, including a dense-ionizing radiation, for obtain of experimental mutations. He formulated a “hit-principle” and a “target theory” – the basis of modern quantitative radiobiology; a “principle of amplifier”, which explains how a single change, such as a gene mutation that can occur for energies of only a few electron-volts, activates forces that are several orders of magnitude larger and change the properties of the whole individual. He elaborated whole doctrine about microevolution – the emergence of new biological species, identified the elementary object of microevolution – population, elementary material – mutations, elementary factors – mutational process, elementary evolutionary phenomenon – stable change in the genotypic composition of the population. Based on the huge experimental material about migration of radionuclides in the environment and their uptake to living organisms, he formulated the main foundation of radiation ecology. The author summarizes the memories of meetings with scientist. Keywords: N.W. Timofeeff-Resovsky, radiation genetics, population genetics, radiation biology, radiation ecology, microevolution.


Sign in / Sign up

Export Citation Format

Share Document