membrane extraction
Recently Published Documents


TOTAL DOCUMENTS

504
(FIVE YEARS 50)

H-INDEX

47
(FIVE YEARS 2)

Talanta ◽  
2022 ◽  
Vol 238 ◽  
pp. 123031
Author(s):  
Somayeh Yousefi ◽  
Somayeh Makarem ◽  
Waleed Alahmad ◽  
Farzaneh Dorabadi Zare ◽  
Hadi Tabani

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Katarzyna Gębura ◽  
Piotr P. Wieczorek ◽  
Anna Poliwoda

The method for determining glyphosate (NPG) and its metabolite AMPA (aminomethyl phosphonic acid) in solid food samples using UAE-SLM-HPLC–PDA technique was developed. Firstly, ultrasonic-assisted solvent extraction (UAE) and protein precipitation step were used for the analyte isolation. Then, the supernatant was evaporated to dryness and redissolved in distilled water (100 mL). The obtained solution was alkalized to pH 11 (with 1 M NaOH) and used directly as donor phase in SLM (supported liquid membrane) extraction. The SLM extraction was performed using 2 M NaCl (5 mL) as an acceptor phase. The flow rate of both phases (donor and acceptor) was set at 0.2 mL/min. The membrane extraction took 24 h but did not require any additional workload. Finally, the SLM extracts were analyzed using the HPLC technique with photo-diode array detector (PDA) and an application of pre-column derivatization with p-toluenesulfonyl chloride. Glyphosate residues were determined in food samples of walnuts, soybeans, barley and lentil samples. The LOD values obtained for the studied food were 0.002 μg g−1 and 0.021 μg g−1 for NPG and AMPA, respectively. Recoveries values ranged from 32% to 69% for NPG, 29% to 56% for AMPA and depended on the type of sample matrix. In the case of buckwheat and rice flour samples, the content of NPG and AMPA was below the detection level of a used analytical method.


2021 ◽  
Vol 22 (22) ◽  
pp. 12493
Author(s):  
Niloufar Mosaddeghzadeh ◽  
Neda S. Kazemein Jasemi ◽  
Jisca Majolée ◽  
Si-Cai Zhang ◽  
Peter L. Hordijk ◽  
...  

Three decades of research have documented the spatiotemporal dynamics of RHO family GTPase membrane extraction regulated by guanine nucleotide dissociation inhibitors (GDIs), but the interplay of the kinetic mechanism and structural specificity of these interactions is as yet unresolved. To address this, we reconstituted the GDI-controlled spatial segregation of geranylgeranylated RHO protein RAC1 in vitro. Various biochemical and biophysical measurements provided unprecedented mechanistic details for GDI function with respect to RHO protein dynamics. We determined that membrane extraction of RHO GTPases by GDI occurs via a 3-step mechanism: (1) GDI non-specifically associates with the switch regions of the RHO GTPases; (2) an electrostatic switch determines the interaction specificity between the C-terminal polybasic region of RHO GTPases and two distinct negatively-charged clusters of GDI1; (3) a non-specific displacement of geranylgeranyl moiety from the membrane sequesters it into a hydrophobic cleft, effectively shielding it from the aqueous milieu. This study substantially extends the model for the mechanism of GDI-regulated RHO GTPase extraction from the membrane, and could have implications for clinical studies and drug development.


2021 ◽  
pp. ASN.2021020182
Author(s):  
Chengqing Qu ◽  
Robyn Roth ◽  
Pongpratch Puapatanakul ◽  
Charles Loitman ◽  
Dina Hammad ◽  
...  

Background Actin stress fibers are abundant in cultured cells, but little is known about them in vivo. In podocytes, much evidence suggests that mechanobiologic mechanisms underlie podocyte shape and adhesion in health and in injury, with structural changes to actin stress fibers potentially responsible for pathologic changes to cell morphology. However, this hypothesis is difficult to rigorously test in vivo due to challenges with visualization. A technology to image the actin cytoskeleton at high resolution is needed to better understand the role of structures such as actin stress fibers in podocytes. Methods We developed the first visualization technique capable of resolving the three-dimensional cytoskeletal network in mouse podocytes in detail while definitively identifying the proteins that comprise this network. This technique integrates membrane extraction, focused ion beam scanning electron microscopy, and machine learning image segmentation. Results Using isolated mouse glomeruli from healthy animals, we observed actin cables and intermediate filaments linking the interdigitated podocyte foot processes to newly described contractile actin structures located at the periphery of the podocyte cell body. Actin cables within foot processes formed a continuous, mesh-like, electron-dense sheet that incorporated the slit diaphragms. Conclusions Our new technique revealed, for the first time, the detailed three-dimensional organization of actin networks in healthy podocytes. In addition to being consistent with the gel compression hypothesis, which posits that foot processes connected by slit diaphragms act together to counterbalance the hydrodynamic forces across the glomerular filtration barrier, our data provide insight into how podocytes respond to mechanical cues from their surrounding environment.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2748
Author(s):  
Farhana Iylia Fatinee Mohd Yusree ◽  
Angela Paul Peter ◽  
Mohd Zuhair Mohd Nor ◽  
Pau Loke Show ◽  
Mohd Noriznan Mokhtar

In recent years, downstream bioprocessing industries are venturing into less tedious, simple, and high-efficiency separation by implementing advanced purification and extraction methods. This review discusses the separation of proteins, with the main focus on amylase as an enzyme from agricultural waste using conventional and advanced techniques of extraction and purification via a liquid biphasic system (LBS). In comparison to other methods, such as membrane extraction, precipitation, ultrasonication, and chromatography, the LBS stands out as an efficient, cost-effective, and adaptable developing method for protein recovery. The two-phase separation method can be water-soluble polymers, or polymer and salt, or alcohol and salt, which is a simpler and lower-cost method that can be used at a larger purification scale. The comparison of different approaches in LBS for amylase purification from agricultural waste is also included. Current technology has evolved from a simple LBS into microwave-assisted LBS, liquid biphasic flotation (LBF), thermoseparation (TMP), three-phase partitioning (TPP), ultrasound-assisted LBS, and electrically assisted LBS. pH, time, temperature, and concentration are some of the significant research parameters considered in the review of advanced techniques.


Bioanalysis ◽  
2021 ◽  
Author(s):  
Ali Zeraatkar Moghaddam ◽  
Amir Ehsan Bameri ◽  
Mohammad Reza Ganjali ◽  
Michal Alexovič ◽  
Mehdi Erfani Jazi ◽  
...  

Aim: Hollow-fiber-based supported liquid membrane was modified utilizing nanostructures such as graphite, graphene oxide or nitrogen-doped graphene oxide, for electro-membrane extraction (EME) of imatinib and sunitinib from biological fluids. By applying these conductive nanostructures, a low-voltage EME device (6.0 V) was fabricated. Materials & methods: A response surface methodology through central composite design was used to evaluate and optimize effects of various essential factors that influence on normalized recovery. Results: Optimal extraction conditions were set as, 1-octanol with 0.01 % (w/v) graphene oxide functioning as the supported liquid membrane, an extraction time of 17.0 min, pH of the acceptor and the donor phase of 2.8 and 7.9, respectively. Conclusion: The method was successfully applied to quantify imatinib and sunitinib in biological fluids.


Sign in / Sign up

Export Citation Format

Share Document