intertidal environments
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 23)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
pp. 132-145
Author(s):  
William E.N. Austin ◽  
Craig Smeaton ◽  
Paulina Ruranska ◽  
David M. Paterson ◽  
Martin W Skov ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Susumu Tanabe ◽  
Toshimichi Nakanishi ◽  
Rei Nakashima

AbstractStudies of the evolution of coastal lowlands since the Last Glacial Maximum (LGM) typically ignore radiocarbon data from sediment samples that have undergone reworking. However, these samples contain information on their sediment sources and the timing of their redeposition. We analyzed 738 radiocarbon dates obtained from shell and plant material in samples of post-LGM coastal sediment from north of Tokyo Bay, Japan. Of these samples, 245 (33%) were reworked. Furthermore, the percentage of reworked samples and their average age offsets increased with the depth of the water environment (terrestrial, 15% and 360 ± 250 years, respectively; intertidal, 26% and 470 ± 620 years; subtidal, 39% and 550 ± 630 years). Taking these radiocarbon samples as a proxy for clastic material, our results imply that channel erosion accounted for relatively little clastic removal in the terrestrial and intertidal environments over short timescales, whereas ~ 40% of clastics were removed by storm winnowing and transported in stepwise fashion to deeper water over longer timescales and ~ 60% in the subtidal environment were transported by floods directly from river mouths. These findings imply that radiocarbon ages from reworked samples can be used to quantify clastic recycling processes and their history in coastal areas.


iScience ◽  
2021 ◽  
pp. 103547
Author(s):  
Ashifa Nizam ◽  
Suraj Prasannakumari Meera ◽  
Ajay Kumar

2021 ◽  
Author(s):  
Susumu Tanabe ◽  
Toshimichi Nakanishi ◽  
Rei Nakashima

Abstract Studies of the evolution of coastal lowlands since the Last Glacial Maximum (LGM) typically ignore radiocarbon data from sediment samples that have undergone reworking. However, these samples contain information on their sediment sources and their timing of redeposition. We analyzed 738 radiocarbon dates obtained from shell and plant material in samples of post-LGM coastal sediment from north of Tokyo Bay. Of these samples, 245 (33%) had reworked ages. Furthermore, the percentage of reworked samples and their average age offsets increased with the depth of the water environment (terrestrial, 15% and 360 ± 250 years, respectively; intertidal, 26% and 470 ± 620 years; subtidal, 39% and 550 ± 630 years). Taking these radiocarbon samples as a proxy for clastic material, our results imply that channel erosion accounted for relatively little clastic removal in the terrestrial and intertidal environments in short duration, whereas ~40% of clastics were removed by storm winnowing and transported in stepwise fashion to deeper water in long duration and ~60% were transported by floods directly from river mouths in the subtidal environments. These findings imply that radiocarbon ages from reworked samples can be used to quantify clastic recycling processes and their history in coastal areas.


2021 ◽  
pp. 102033
Author(s):  
Isabel Hong ◽  
Benjamin P. Horton ◽  
Andrea D. Hawkes ◽  
Robert J. O'Donnell ◽  
Jason S. Padgett ◽  
...  

2021 ◽  
Author(s):  
Xiao Feng ◽  
Guohong Li ◽  
Shaohua Xu ◽  
Weihong Wu ◽  
Qipian Chen ◽  
...  

Author(s):  
Franziska Klapper ◽  
Sien Audoor ◽  
Wim Vyverman ◽  
Georg Pohnert

AbstractBenthic diatoms dominate primary production in marine subtidal and intertidal environments. Their extraordinary species diversity and ecological success is thought to be linked with their predominantly heterothallic sexual reproduction. Little is known about pheromone involvement during mating of pennate diatoms. Here we describe pheromone guided mating in the coastal raphid diatom Cylindrotheca closterium. We show that the two mating types (mt+ and mt−) have distinct functions. Similar to other benthic diatoms, mt+ cells are searching for the mt− cells to pair. To enhance mating efficiency mt− exudes an attraction pheromone which we proved by establishing a novel capillary assay. Further, two more pheromones produced by mt− promote the sexual events. One arrests the cell cycle progression of mt+ while the other induces gametogenesis of mt+. We suggest that C. closterium shares a functionally similar pheromone system with other pennate diatoms like Seminavis robusta and Pseudostaurosira trainorii which synchronize sexual events and mate attraction. Remarkably, we found no evidence of mt+ producing pheromones, which differentiates C. closterium from other pennates and suggests a less complex pheromone system in C. closterium.


2021 ◽  
Vol 232 (5) ◽  
Author(s):  
Juan Carlos Camacho-Chab ◽  
Benjamín O. Ortega-Morales ◽  
Christine Gaylarde ◽  
Juan E. Pereañez-Sacarías ◽  
Hilda P. León-Tejera ◽  
...  

2021 ◽  
Author(s):  
Adam Woods

<p>Fans and hemispheres comprised of crystals of calcium carbonate that directly grew on the seafloor are an intriguing feature of ancient carbonate environments. Calcium carbonate fans from across Earth history are typically made up of crystals of neomorphosed calcium carbonate that maintain an acicular morphology that is pseudohexagonal in cross – section with blunt terminations, pointing to an aragonite precursor. Crystal fans may occur as isolated bodies, or may form larger aggregates that are sometimes associated with microbialites, and form larger, reef – like structures. Some of the first occurrences of these features are within Neoarchean carbonates, when the crystals fans grew to impressive sizes, with lengths of over 1 m, formed layers of marine cement that reached thicknesses of up to several meters, are laterally continuous over 10s of km or more, and formed across carbonate platform settings from high energy subtidal settings to lower intertidal environments. Crystalline carbonate fans become less common and smaller (cm – scale) in the Paleoproterozoic, and nearly disappear prior to the Neoproterozoic, when they are associated with cap carbonates, and are primarily found in deeper water or outer shelf settings with low sedimentation rates. Seafloor cements are rare during the Phanerozoic, and are typically limited to small geographic areas with unusual sedimentary conditions, or are found in void spaces, where seawater chemistry was able to undergo modifications that would allow precipitation of cement fans. The exception is during the interval of time that followed the Permian – Triassic mass extinction, when small, cm – scale fans and hemispheres are found in Lower Triassic and lowermost Middle Triassic rocks. These cement fans occur in a variety of settings, although they are typically found in deeper water environments. Calcium carbonate fans that formed following the Permian – Triassic extinction may have microbial remains preserved within the cements, and are frequently found in close lateral or stratigraphic association with microbialites. However, some examples of post – extinction carbonate fans appear to have formed abiotically, without any microbial influence. Overall, crystalline calcium carbonate fans signal high levels of calcium carbonate supersaturation in ancient oceans. The initial decline in seafloor cement growth from the Neoarchean into the Proterozoic may have been the result of accelerated micrite production, while Neoproterozoic calcium carbonate fan growth is associated with glacial decay and retreat. Lower Triassic seafloor cements are likely the result of stratification and stagnation of the deep oceans that led to enhanced alkalinity. Calcium carbonate crystal fans are an intriguing feature of ancient carbonates that signal depositional systems and ocean chemistry that is much different from modern ocean, and provide a fascinating glimpse into non – uniformitarian sedimentary environments.</p>


Sign in / Sign up

Export Citation Format

Share Document