compatibilizing effect
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 10)

H-INDEX

24
(FIVE YEARS 3)

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 835 ◽  
Author(s):  
Marina Ramos ◽  
Franco Dominici ◽  
Francesca Luzi ◽  
Alfonso Jiménez ◽  
Maria Carmen Garrigós ◽  
...  

Polyester-based biocomposites containing INZEA F2® biopolymer and almond shell powder (ASP) at 10 and 25 wt % contents with and without two different compatibilizers, maleinized linseed oil and Joncryl ADR 4400®, were prepared by melt blending in an extruder, followed by injection molding. The effect of fine (125–250 m) and coarse (500–1000 m) milling sizes of ASP was also evaluated. An improvement in elastic modulus was observed with the addition of< both fine and coarse ASP at 25 wt %. The addition of maleinized linseed oil and Joncryl ADR 4400 produced some compatibilizing effect at low filler contents while biocomposites with a higher amount of ASP still presented some gaps at the interface by field emission scanning electron microscopy. Some decrease in thermal stability was shown which was related to the relatively low thermal stability and disintegration of the lignocellulosic filler. The added modifiers provided some enhanced thermal resistance to the final biocomposites. Thermal analysis by differential scanning calorimetry and thermogravimetric analysis suggested the presence of two different polyesters in the polymer matrix, with one of them showing full disintegration after 28 and 90 days for biocomposites containing 25 and 10 wt %, respectively, under composting conditions. The developed biocomposites have been shown to be potential polyester-based matrices for use as compostable materials at high filler contents.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 526
Author(s):  
Xin Yang ◽  
Jinxing Song ◽  
Hengti Wang ◽  
Qingqing Lin ◽  
Xianhua Jin ◽  
...  

The compatibilizer with double comb structure has a superior compatibilizing effect for immiscible polymer blends due to the symmetrical structure on both sides of main chains. Extensive study related to the architectural effects of compatibilizer on the compatibilization has mainly focused on the side chains. We investigated the influence of the compatibilizer-main-chain structure on the compatibilizing effect for immiscible poly(vinylidene fluoride)/poly(L-lactic acid) (PVDF/PLLA) blends. Two reactive-comb compatibilizers with polystyrene (PS) and polymethylmethacrylate (PMMA) as main chains and PMMA as the side chains have been synthesized. PS is immiscible with both PLLA and PVDF, while PMMA is miscible with PVDF. It was found that both compatibilizers can improve the compatibility between the PLLA and PVDF, with different compatibilization effects. In the PVDF/PLLA (50/50) blends, 1 wt.% poly(styrene-co-glycidyl methacrylate)-graft-poly(methyl methacrylate) (RC–SG) tuned the morphology from the droplet-in-matrix structure to the co-continuous structure, while the blends with poly(methyl methacrylate-co-glycidyl methacrylate)-graft-poly(methyl methacrylate) (RC–MMG) kept the sea-island structure with even 3 wt.% loading. Moreover, RC–SG induces a wider co-continuous interval range than RC–MMG. The co-continuous structure obtained by RC–SG was also more stable than that by RC–MMG. It was further found that RC–SG-compatibilized PVDF/PLLA blends exhibit higher mechanical properties than the RC–MMG-compatibilized blends.


Polímeros ◽  
2020 ◽  
Vol 30 (4) ◽  
Author(s):  
Erick Gabriel Ribeiro dos Anjos ◽  
Juliano Marini ◽  
Larissa Stieven Montagna ◽  
Thaís Larissa do Amaral Montanheiro ◽  
Fabio Roberto Passador

2019 ◽  
Vol 53 (1-2) ◽  
pp. 145-154
Author(s):  
FANGBING YU ◽  
◽  
QIUNING WU ◽  
JINGBING CHEN ◽  
JIANBIN SONG ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 685 ◽  
Author(s):  
Patricia Liminana ◽  
David Garcia-Sanoguera ◽  
Luis Quiles-Carrillo ◽  
Rafael Balart ◽  
Nestor Montanes

Green composites of poly(butylene succinate) (PBS) were manufactured with almond shell flour (ASF) by reactive compatibilization with maleinized linseed oil *MLO) by extrusion and subsequent injection molding. ASF was kept constant at 30 wt %, while the effect of different MLO loading on mechanical, thermal, thermomechanical, and morphology properties was studied. Uncompatibilized PBS/ASF composites show a remarkable decrease in mechanical properties due to the nonexistent polymer‒filler interaction, as evidenced by field emission scanning electron microscopy (FESEM). MLO provides a plasticization effect on PBS/ASF composites but, in addition, acts as a compatibilizer agent since the maleic anhydride groups contained in MLO are likely to react with hydroxyl groups in both PBS end chains and ASF particles. This compatibilizing effect is observed by FESEM with a reduction of the gap between the filler particles and the surrounding PBS matrix. In addition, the Tg of PBS increases from −28 °C to −12 °C with an MLO content of 10 wt %, thus indicating compatibilization. MLO has been validated as an environmentally friendly additive to PBS/ASF composites to give materials with high environmental efficiency.


2019 ◽  
Vol 33 (9) ◽  
pp. 1234-1247
Author(s):  
R Balasubramanian ◽  
Sujin Park ◽  
Sam Soo Kim ◽  
Jaewoong Lee

A series of binary composite blends of m-aramid/zinc ionomer ( m-Ar/ZnI) with different weight ratio were prepared by the solution blend technique. These composite films were characterized in terms of the structure, crystallinity, morphology, thermal, and mechanical properties. The temperature corresponding to 5% ( T5%) weight loss are in the range of 101–438°C. The composite films showed good storage modulus (in the range of 2.1–3.1 GPa) and high glass transition temperature ( Tg) (in the range of 254–278°C) and exhibited good tensile strength but it decreased with an increase in the content of ZnI. The strong compatibilizing effect was observed between the m-Ar and ZnI components, where exceptionally self-assembled morphology was formed in the m-Ar/ZnI composite films. The most favorable mechanical and thermal data supported by the finest structure were observed with 3:0.50 weight ratio. This study evaluates the efficiency of ionomer in m-Ar/ZnI composite blends.


Sign in / Sign up

Export Citation Format

Share Document