paper recycling
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 41)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 55 (9-10) ◽  
pp. 971-979
Author(s):  
SHAKIBA BAGHERI ◽  
◽  
MEHDI RAHMANINIA ◽  
RABI BEHROOZ ◽  
◽  
...  

Using lignocellulosic materials for producing more value-added bioproducts is an attractive mission. Fiber fines, which represent an important part of the wastes generated by paper recycling mills, have been considered in the current research. Dissolving these lignocellulosic residues in environmentally friendly and inexpensive solvents can be a great achievement. For this purpose, the performance of urea/sodium hydroxide in dissolving printing and writing pulp (RPW) fines was investigated. Although using sodium hydroxide alone had a positive effect on the dissolution of recycled printing and writing pulp (RPWP) fines, the addition of urea increased the dissolution of fines from 23% to 56%. Different levels of urea consumption had no significant effect on the dissolving process. The performance of the urea/sodium hydroxide system in dissolving fines suspensions with different concentration (1, 3 and 5%) showed that reducing the concentration leads to an increase in fines dissolution (56, 36 and 7%, respectively). The results of FTIR confirmed the presence of cellulose without any hemicelluloses and lignin in the dissolving part. The results of X-ray diffraction analysis of soluble cellulose showed that the type-I cellulose structure probably changed to type-II cellulose. No reduction in the DP of dissolved cellulose and the integrated structure of the final cellulosic film confirmed by the FE-SEM images affirmed the successful dissolution of the RPWP fines in this system.


Author(s):  
Abbas Hasannattaj Jelodar ◽  
Hasan Amini Rad ◽  
Seyed Mehdi Borghei ◽  
Manuchehr Vossoughi ◽  
Rahmatollah Rouhollahi

2021 ◽  
Vol 11 (01) ◽  
pp. 39
Author(s):  
Sitatun Zunaidah ◽  
Rendana Saputra ◽  
Hendro Risdianto ◽  
Sri Harjati Suhardi

Biodeinking of Old Newspaper using Crude Laccase from Marasmiellus palmivorus   Abstract Enzymatic deinking is receiving growing attention due to the negative environmental impact caused by chemical deinking. Old newspaper (ONP) is one of the materials that can be used in paper recycling. The use of the crude laccase from Marasmiellus palmivorus in biodeinking is due to its capability to remove the ink. The objective of this research was to determine the potential use of laccase in enzymatic deinking to increase the brightness value and reduce ERIC (Effective Residual Ink Concentration) value on old newspapers. Laccase was produced from M. palmivorus by using cultivation in a static Solid State Fermentation (SSF) reactor with lignocellulosic as substrate. The methodology involves the production of crude laccase extract, laccase optimization using variations of dosage, temperatures, and times. The highest laccase activity is 1,142.86 U/L (16 U/mg). Optimization of laccase crude extract enzyme in biodeinking can increase brightness values by 15.22% (54.27 %ISO) to 25.03% (58.89 %ISO) compared to controls (47.09% ISO) and reduce ERIC values by 46.12% (452.1 ppm) to 68.26% (266.4 ppm) compared to control (839.2 ppm). Keywords: biodeinking, Marasmiellus palmivorus, laccase, old newspaper Abstrak Deinking enzimatis semakin mendapat perhatian karena dampak negatif terhadap lingkungan yang disebabkan oleh deinking secara kimia. Kertas koran bekas merupakan salah satu bahan yang dapat didaur ulang. Pemanfaatan ekstrak kasar lakase dari Marasmiellus palmivorus digunakan dalam biodeinking karena memiliki kemampuan untuk menyisihkan tinta. Penelitian ini bertujuan untuk mengetahui potensi ekstrak kasar lakase untuk meningkatkan nilai brightness (derajat cerah) dan menurunkan nilai Effective Residual Ink Concentration (ERIC) dalam proses biodeinking kertas koran bekas. Produksi ekstrak kasar lakase dilakukan dalam reaktor statis Solid State Fermentation (SSF) dengan substrat material lignoselulosik. Produksi ekstrak kasar lakase menghasilkan aktivitas tertinggi 1.142,86 U/L (8,33 U/mg). Perlakuan biodeinking dengan enzim ekstrak kasar lakase dapat meningkatkan nilai derajat cerah 15,22% (54,27 %ISO) sampai 25,03% (58,89 %ISO) dibandingkan dengan kontrol (47,10 %ISO) dan menurunkan nilai ERIC 46,12% (452,1 ppm) sampai 68,26% (266,4 ppm) dibandingkan dengan kontrol (839,2 ppm). Kata kunci:  biodeinking, Marasmiellus palmivorus, lakase, kertas koran bekas


Author(s):  
Prof. Dr. S. M. Mowade ◽  
Chahul Katre ◽  
Mohammad Haris Sheikh ◽  
Rajat Yadav ◽  
Shaherojkha Pathan

The production of enormous quantities of waste papers is evident in any large institution, particularly educational institutions such as schools or universities. It's also feasible to make good use of recycled paper (craft papers, registers etc). So, rather than throwing away the waste papers, recycling them makes sense. A paper-recycling machine that may be operated manually was conceived and built. This was done to allow for the conversion of waste paper into a useful product in the home. The machine unit's design has been created in accordance with all essential component requirements. In addition, the overall cost is minimal, and there is no requirement for power.


2021 ◽  
Vol 29 (2) ◽  
pp. 85-93
Author(s):  
Song Hu ◽  
Jigeng Li ◽  
Mengna Hong ◽  
Yi Man

Waste paper recycling is an important way to realize the environmental protection development of the papermaking industry. The quality of the pulp will affect the pulp sales of the secondary fiber paper mills. The waste paper pulp can be adjusted by controlling the pulping process working conditions, but the working conditions of the waste paper pulping process have too many parameters. And the parameters are coupled with each other, it is difficult to control. In order to find the best working conditions and improve the quality of the pulp, this study uses the association rules algorithm to optimize the parameters for the waste paper pulping process. These parameters are power of refiner, waste paper concentration of refiner, the volume of slurry that enters deinked process, deinking agent amount, deinking time, deinking temperature, bleaching agent amount, bleaching time, and bleaching temperature. The test results show that the qualified rate of the pulp produced under the improved working conditions is 92.56%, an increase of 6.93%, and the average electricity consumption per ton of pulp is reduced by 5.76 kWh/t. In addition to potential economic benefits, this method can reduce carbon emissions.


2021 ◽  
pp. 39-48
Author(s):  
Ankish Aman ◽  
Om Prakash ◽  
Bharath Bhushan ◽  
Akash Kumar

Paper utilized every day with learning establishments; for example, colleges and schools being the primary users. Because of its single utilization, it winds up being arranged in a large portion of the paper squander. There is a total 8 percent increase in consumption of paper in recent years in India. According to a paper mart survey report, India is producing around 22 million tons of paper per year. This production leads to the demand for recycling the paper waste. In this paper, smart paper recycling process in the industry is discussed. It involves recycling process of paper waste to producing a useful product. The paper gives the management process and the technique that can be used with the new innovative design and production compared with the existing paper recycling machine. The advantages of the device are not just fixated on the benefits of reusing paper but also lead to improvement by technology advancement.


2021 ◽  
Vol 120 ◽  
pp. 364-372
Author(s):  
Logan Jeremy Brown ◽  
François–Xavier Collard ◽  
Lalitha Devi Gottumukkala ◽  
Johann Görgens
Keyword(s):  

2021 ◽  
Vol 10 (1) ◽  
pp. 264-281
Author(s):  
Ao Li ◽  
Dezhong Xu ◽  
Lu Luo ◽  
Yalan Zhou ◽  
Wen Yan ◽  
...  

Abstract The rapid economic growth and environmental concerns have led to high demands on paper and paper-based products in terms of variety, quantity, quality, and specialty. Enhancement and functionalization with additives are constantly required. Moving away from traditional petroleum-based additives, researchers have attempted to use “green” nanoadditives by introducing renewable environmentally friendly nanocellulose. This article studies the functions of nanocellulose as bio-additives (enhancer, retention and filtration reagent, and coating aid) in paper and paper products, and overviews the research development of nanocellulose-based additives and their applications in the paper industry for both efficient production and paper functionalization. The review shows that (1) a variety of nanocellulose-based bioadditives have been reported for various applications in paper and paper-based products, while commercially viable developments are to be advanced; (2) nanocellulose was mostly formulated with other polymer and particles as additives to achieve their synergistic effects; (3) major interests have concentrated on the nanocellulose in the specialty papers as representing more value added products and in the efficient utilization of recycled fibers, which remains most attractive and promising for future development. This report shall provide most useful database information for researchers and industries for paper recycling and enhancement, and paper-based products innovation and application.


2021 ◽  
Author(s):  
E.U. Thoden van Velzen ◽  
◽  
K. Molenveld ◽  
M.T. Brouwer ◽  
M. van der Zee ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document