lower order terms
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 45)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 5 (1) ◽  
pp. 1-14
Author(s):  
David Arcoya ◽  
◽  
Lucio Boccardo ◽  
Luigi Orsina ◽  
◽  
...  

<abstract><p>In this paper, dedicated to Ireneo Peral, we study the regularizing effect of some lower order terms in Dirichlet problems despite the presence of Hardy potentials in the right hand side.</p></abstract>


2021 ◽  
Vol 26 (4) ◽  
pp. 669-683
Author(s):  
Farah Balaadich ◽  
Elhoussine Azroul

In this paper we prove the existence of weak solutions for a class of quasilinear parabolic systems, which correspond to diffusion problems, in the form where Ω is a bounded open domain of be given and The function v belongs to is in a moving and dissolving substance, the dissolution is described by f and the motion by g. We prove the existence result by using Galerkin’s approximation and the theory of Young measures.


2021 ◽  
Vol 55 (1) ◽  
pp. 43-70
Author(s):  
Abdeslam Talha ◽  
Mohamed Saad Bouh Elemine Vall

In this paper, we prove the existence of solutions to an elliptic problem containing two lower order terms, the first nonlinear term satisfying the growth conditions and without sign conditions and the second is a continuous function on R.


Author(s):  
Fernando Farroni ◽  
Luigi Greco ◽  
Gioconda Moscariello ◽  
Gabriella Zecca

AbstractWe consider a Cauchy–Dirichlet problem for a quasilinear second order parabolic equation with lower order term driven by a singular coefficient. We establish an existence result to such a problem and we describe the time behavior of the solution in the case of the infinite–time horizon.


Author(s):  
Xueyuan Wan ◽  
Genkai Zhang

AbstractLet $$\pi :\mathcal {X}\rightarrow M$$ π : X → M be a holomorphic fibration with compact fibers and L a relatively ample line bundle over $$\mathcal {X}$$ X . We obtain the asymptotic of the curvature of $$L^2$$ L 2 -metric and Qullien metric on the direct image bundle $$\pi _*(L^k\otimes K_{\mathcal {X}/M})$$ π ∗ ( L k ⊗ K X / M ) up to the lower order terms than $$k^{n-1}$$ k n - 1 , for large k. As an application we prove that the analytic torsion $$\tau _k(\bar{\partial })$$ τ k ( ∂ ¯ ) satisfies $$\partial \bar{\partial }\log (\tau _k(\bar{\partial }))^2=o(k^{n-1})$$ ∂ ∂ ¯ log ( τ k ( ∂ ¯ ) ) 2 = o ( k n - 1 ) , where n is the dimension of fibers.


2021 ◽  
Author(s):  
◽  
Jose Luis Luna-Garcia

In this work we study issues of existence and uniqueness of solutions of certain boundary value problems for elliptic equations in the upper half-space. More specifically we treat the Dirichlet, Neumann, and Regularity problems for the general second order, linear, elliptic operator under a smallness assumption on the coefficients in certain critical Lebesgue spaces. Our results are perturbative in nature, asserting that if a certain operator L[subscript 0] has good properties (as far as boundedness and invertibility of certain associated solution operators), then the same is true for L[subscript 1], whenever the coefficients of these two operators are close in certain L[subscript p] spaces. Our approach is through the theory of layer potentials, though the lack of good estimates for solutions of L [equals] 0 force us to use a more abstract construction of these objects, as opposed to the more classical definition through the fundamental solution. On the other hand, these more general objects suggest a wider range of applications for these techniques. The results contained in this thesis were obtained in collaboration with Simon Bortz, Steve Hofmann, Svitlana Mayboroda, and Bruno Poggi. The resulting publications can be found in [BHL+a] and [BHL+b].


Author(s):  
Fernando Farroni ◽  
Luigi Greco ◽  
Gioconda Moscariello ◽  
Gabriella Zecca

AbstractWe consider a family of quasilinear second order elliptic differential operators which are not coercive and are defined by functions in Marcinkiewicz spaces. We prove the existence of a solution to the corresponding Dirichlet problem. The associated obstacle problem is also solved. Finally, we show higher integrability of a solution to the Dirichlet problem when the datum is more regular.


Sign in / Sign up

Export Citation Format

Share Document