intumescent system
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 0)

2022 ◽  
pp. 27-36
Author(s):  
LIUBOV VAKHITOVA ◽  
KONSTANTIN KALAFAT ◽  
NADIYA TARAN ◽  
VOLODYMYR BESSARABOV

Purpose. To study the influence of the carbonizing agent structure on the formation of thermal insulating char layer of intumescent system acid donor/polyol and on the fire protection efficiency of the system at high temperatures. Methodology. A fire retardant mixture of an acid donor (phosphates ammonium, urea, melamine)/ polyol was chosen as a model intumescent system. Dispersion of vinyl acetate copolymer with ethylene was used as a polymeric component. The study applied the characteristics of the char layer of the intumescent composition at a certain temperature. The volumetric intumescent coefficient (K, cm3/g), mass of char residue (m, %), structure and density of the char layer are proposed as the main estimated parameters of flame retardant effect. IR spectroscopy was used to identify products of thermolysis of intumescent systems. Determination of fire protection efficiency of intumescent coatings was carried out in a mini-oven under standard fire conditions. Findings. The influence of polyol structure on the formation of thermal insulating char layer of intumescent acid donor/polyol system and the prediction of fire protection efficiency of this system under high temperature conditions has been investigated. It has been shown that under conditions of thermal shock the fire protection efficiency is more dependent on the nucleophilic reactivity of the polyol towards the unsaturated phosphorus atom of the acid donor than on its thermal stability. It has been found that pentaerythritol, dipentaerythritol, starch, dextrin, xylitol and sorbitol are the most effective carbonizing agents, regardless of the structure of the acid donor. It has been proved by infrared spectroscopy that at high temperatures as a result of the decomposition of pentaerythritol one of the reaction products is the aldehydes interacting with pentaerythritol with the formation of oligomeric compounds with a simple ether bond C-O-C. At the same time, pentaerythritol can be considered as a universal source of carbon framework for intumescent flame retardants regardless of the phosphate structure used. Originality. It has been shown that an important factor to increase the fire protection efficiency of intumescent systems is the use of polyols with an increased nucleophilicity in the esterification between polyol and phosphoric acid.Practical value. The optimal polyols as carbonizing agents for formulation of intumescent coatings with enhanced fire protection properties have been determined.


2022 ◽  
pp. 69-80
Author(s):  
LIUBOV VAKHITOVA ◽  
KONSTANTIN KALAFAT ◽  
NADIYA TARAN ◽  
VOLODYMYR BESSARABOV

Purpose. Study of influence of blowing agents amines structure on the construction processes of thermal insulating char layer of intumescent system ammonium polyphosphate/pentaerythritol/amine and fire protection efficiency of this system at high temperatures. Methodology. A fire retardant mixture of ammonium polyphosphate/pentaerythritol/amine was chosen as a model intumescent system. Dispersion of vinyl acetate copolymer with vinyl ether of versatic acid was used as a polymeric component. A step-by-step study of the characteristics of the char layer of the intumescent composition was applied in the study, consisting in the analysis of the characteristics of the char formed after keeping the intumescent composition samples at a certain temperature between 100 and 800 °C, char residue mass (m, %), structure and density of the formed char layer. The method of infrared spectroscopy was used for identification of products of thermolysis of intumescent systems. Determination of fire protection efficiency of intumescent coatings was carried out in a mini-oven under standard fire conditions. Findings. The influence of the structure of amines blowing agents on the formation of char layer of intumescent system ammonium polyphosphate/pentaerythritol/amine was studied. Physico-chemical parameters of char layer formed during high temperature swelling of intumescent system components with varying amine: urea, melamine, dicyandiamide, guanidine, thiocarbamide, formylthiosemicarbazide, thiosemicarbazide, phenylethylcarbamide have been determined. In the temperature range 200–400 oC for systems with linear amines (urea, thiocarbamide, thiosemicarbazide), there is a rapid formation of insulating layer with intense outgassing (high intumescent coefficients K) and the same rapid its destruction with significant losses of char residue mass (Δm). The presence of melamine, dicyandiamide and guanidine in intumescent system provides constancy of intumescent coefficient at minimal mass loss. Chemical transformations of intumescent systems were studied by the method of infrared spectroscopy when the investigated amines were varied. It was found that linear diamines do not form stable spatially branched phosphamide compounds with phosphates as the basis of a thermostable heat-insulating frame. At the same time in IR spectra of char residue systems with melamine, dicyandiamide and guanidine the absorption bands of P-N-C bonds (1070–1050 cm-1) and P-N (980–950 cm-1) up to 600–700 oC are observed. Fire tests proved that melamine, dicyandiamide and guanidine are blowing agents providing maximum protection of metal against fire and can be used for composition of fire retardants for steel constructions.Originality. It has been proved that amines in intumescent polyphosphate system perform at least two functions: blowing agents by means of thermal destruction to incombustible gases and nucleophilic compound that takes part in char layer formation by aminolysis of electrophilic substrates.Practical value. The optimum amine blowing agents for developing formulations of intumescent coatings with enhanced flame retardant properties have been established.


Author(s):  
Л. М. Вахітова ◽  
В. П. Плаван ◽  
В. І. Шологон ◽  
К. В. Калафат ◽  
Н. А. Таран ◽  
...  

Investigation of the effect of nitrate oxide graphite on the parameters of char layer, obtained from the system of ammonium polyphosphate / melamine / pentaerythritol / epoxy resin under the influence of temperatures of 200–800 °С.  Methodology.  A  fire  retardant  mixture  was  chosen  as  a  model  intumescent  system  ammonium polyphosphate / melamine / pentaerythritol. As a polymer component was used bisphenols A / F epoxy resin together with a polyamidoamine hardener. Nitrate oxide graphite was obtained by oxidation of natural scaly graphite  with fuming  nitrogen  acid.  The  effect  of  impurities  of  nitrate  oxide  graphite  was  determined  by thermogravimetry  on  the  intumescence  coefficient  of  intumescent  compositions  and  the  mass  of  the  char residue intumescent compositions in temperature range of 200–800 °С.  Findings. The influence of nitrate oxide graphite on the characteristics was studied of char layer of epoxy intumescent system ammonium polyphosphate / melamine / pentaerythritol / epoxy resin. The study of thermal  oxidative  degradation  was  carried  out  intumescent  compositions  in  the  temperature  range  200–800 °С. It was shown that intercalated graphite compounds increase the thermal stability of the formed char layer at temperatures > 600 °С. Determined intumescence coefficients and thermogravimetric analysis of modified intumescent systems was performed nitrate oxide graphite with different degrees of intercalation, in the conditions of 200–800 °С. It was established that the optimal parameters of the char layer are in terms of volume intumescence coefficient and mass of the char residue are provided by graphites, which contain 15–25% of intercalant in its composition. But the results obtained allow us to determine nitrate oxide graphite as a promising modifier of epoxy intumescent systems to increase its fire protection efficiency. Originality.  The  influence  of  degree  of  intercalation  of  nitrate  oxide  graphite  was  studied  on  the characteristics of char layer of epoxy intumescent system for the first time.  Practical value. The optimal content of intercalant in nitrate oxide graphite was established for the development of formulations of intumescent epoxy coatings with increased fire retardant properties.


Author(s):  
Lyubov Vakhitova ◽  
◽  
Nadiya Taran ◽  
Konstantin Kalafat ◽  
Volodymyr Bessarabov ◽  
...  

Purpose. The purpose of this work is to study the thermal degradation of epoxy polymers and nanocomposites based on them in a fire retardant intumescent coating having a composition – ammonium polyphosphate / melamine / pentaerythritol. Methods. Thermogravimetric studies have been performed on the device “Thermoscan-2”, fire tests were performed by the method of “Bunsen burner”. Results. The influence of the structure of epoxy resin as a polymer component of the intumescent system on oxidative thermal destruction and fire retardant efficiency of reactive coating has been researched. The obtained results allow us to state that the best result has been demonstrated by Araldite GY 783 – epoxy resin of bisphenols A/F with a reactive solvent. The thermal properties of various epoxy resins and nanocomposites based on them with organomodified montmorillonite have been studied. It was found that montmorillonite in the nanocomposite increases the decomposition temperature of epoxy resin. Scientific novelty. It has been shown that the variation of the polymer component of the intumescent coating has little effect on the swelling rate, but the fire retardant efficiency of the intumescent composition containing epoxy resin of bisphenols A/F is higher than the same characteristic for the composition based on epoxy resin of bisphenol A. It has been established that the exclusion of pentaerythritol from the formulation of the epoxy intumescent system causes the formation of a more regular and durable char insulation layer. It has been proved that the use of additional, including nanostructured flame retardants, namely, modified montmorillonite, can increase the fire retardant efficiency of the coating. Practical significance. The obtained results are of practical importance for the development of new scientific approaches to the design of fire-fighting materials with improved performance characteristics through the use of polymers that provide the construction of a thermostable thermal insulation char layer. Through a series of systematic tests, it has been demonstrated that the use of nanoclay and nanocomposites based on epoxy resins allows to improve the formulations of intumescent coatings with high performance with the help of budget nanotechnologies.


In order to optimize the formulation of fire protective coatings for metal constructions, the effect of the ratio of main components in an intumescent system "ammonium polyphosphate–melamine–pentaerythritol" on the thermal destruction of the coating under conditions of fire (200–8000C) has been investigated. Thermal transformations of coatings were studied both by thermogravimetry with stepwise determination of the expansion coefficient by temperature variation and by IR spectroscopy. It was established for the first time that the ratio of ammonium polyphosphate, melamine and pentaerythritol as well as their content in the intumescent system is a factor determining the limit of the fire resistance of steel constructions, which a fire protective coating can ensure. Intumescent coatings with an ammonium polyphosphate:melamine:pentaerythritol ratio of 2:1:1 were shown to be more effective ones to provide the fire resistance of a steel construction during 30 minutes (R30). In turn, the use of the above ratio of 3.5:1:1.5 can provide the limit of the fire resistance of steel construction during 60 minutes (R60). The mixture of melamine and dicyandiamide in the intumescent system causes a synergistic effect, which leads to a non-additive increase in the fire protective efficiency of the coating. The results of this study have been confirmed by full-scale fire tests; they may be used to develop effective means of fire protection of steel constructions.


Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Petri Widsten ◽  
Tarja Tamminen ◽  
Antti Paajanen ◽  
Tuula Hakkarainen ◽  
Tiina Liitiä

AbstractPolyolefins used in building materials and furniture require the use of flame-retardant (FR) additives to improve their fire safety. Such additives should be safe to humans and the environment, and preferably bio-based. In the present work, the FR performance of unmodified and chemically modified technical lignins was compared to that of the ammonium polyphosphate/pentaerythritol (APP/PER) intumescent system in a polypropylene (PP) matrix. Micro-scale combustion calorimetry (MCC) was used to study the peak heat release rate (PHR), temperature at PHR (TPHR), total heat release (THR) and char yield upon thermal decomposition of milligram-scale specimens. The PP/lignin composites showed up to 41% lower PHR and up to 36% lower THR compared to pure PP as well as large char residues. Based on the same parameters, especially the PP/lignin composites made with modified lignins outperformed the reference PP/APP/PER system and the PP/APP/lignin composites where unmodified lignin was used with APP. The most promising PP/lignin composites were prepared with partially demethylated/demethoxylated and depolymerised kraft lignin (‘CatLignin’), modified by the Mannich reaction to a nitrogen content of 13.5%.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 48 ◽  
Author(s):  
Muhammad Maqsood ◽  
Gunnar Seide

Starch, being a polyhydric compound with its natural charring ability, is an ideal candidate to serve as a carbonization agent in an intumescent system. This charring ability of starch, if accompanied by an acidic source, can generate an effective intumescent flame retardant (IFR) system, but the performance of starch-based composites in an IFR system has not been tested in detail. Here, we describe a PLA-based IFR system consisting of ammonium polyphosphate (APP) as acidic source and cornstarch as carbon source. We prepared different formulations by melt compounding followed by molding into sheets by hot pressing. The thermal behavior and surface morphology of the composites was investigated by thermogravimetric analysis and scanning electron microscopy respectively. We also conducted limiting oxygen index (LOI), UL-94, and cone calorimetry tests to characterize the flame-retardant properties. Cone calorimetry revealed a 66% reduction in the peak heat release rate of the IFR composites compared to pure PLA and indicated the development of an intumescent structure by leaving a residual mass of 43% relative to the initial mass of the sample. A mechanism of char formation has also been discussed in detail.


2018 ◽  
Vol 23 (4) ◽  
pp. 353-362
Author(s):  
Adiat Ibironke Arogundade ◽  
Puteri Sri Melor Bt Megat Yussof ◽  
Faiz Ahmad ◽  
Aamir Hussain Bhat

Bauxite residue (BR) is an alumina refinery waste with a global disposal problem. Of the 120 MT generated annually, only 3 MT is disposed via utilization. One of the significant challenges to sustainable utilization has been found to be the cost of processing. In this work, using ball milling, we achieved material modification of bauxite residue. Spectrometric imaging with FESEM showed the transformation from an aggregate structure to nano, platy particulates, leading to particle size homogeneity. BET analysis showed surface area was increased by 23%, while pH was reduced from 10.8 to 9.1 due to collapsing of the hydroxyl surface by the fracturing action of the ball mill. Incorporation of this into a phosphate-based fire retardant, intumescent formulation led to improved material dispersion and the formation of reinforcing heat shielding char nodules. XRD revealed the formation of ceramic metal phosphates which acted as an additional heat sink to the intumescent system, thereby reducing char oxidation and heat transfer to the substrate. Steel substrate temperature from a Bunsen burner test reduced by 33%. Therefore, ball milling can serve as a simple, low-cost processing route for the reuse of bauxite residue in intumescent composites.


Sign in / Sign up

Export Citation Format

Share Document