mode choice modeling
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Eui-Jin Kim

Understanding choice behavior regarding travel mode is essential in forecasting travel demand. Machine learning (ML) approaches have been proposed to model mode choice behavior, and their usefulness for predicting performance has been reported. However, due to the black-box nature of ML, it is difficult to determine a suitable explanation for the relationship between the input and output variables. This paper proposes an interpretable ML approach to improve the interpretability (i.e., the degree of understanding the cause of decisions) of ML concerning travel mode choice modeling. This approach applied to national household travel survey data in Seoul. First, extreme gradient boosting (XGB) was applied to travel mode choice modeling, and the XGB outperformed the other ML models. Variable importance, variable interaction, and accumulated local effects (ALE) were measured to interpret the prediction of the best-performing XGB. The results of variable importance and interaction indicated that the correlated trip- and tour-related variables significantly influence predicting travel mode choice by the main and cross effects between them. Age and number of trips on tour were also shown to be an important variable in choosing travel mode. ALE measured the main effect of variables that have a nonlinear relation to choice probability, which cannot be observed in the conventional multinomial logit model. This information can provide interesting behavioral insights on urban mobility.


Author(s):  
Fangru Wang ◽  
Catherine L. Ross

The multinomial logit (MNL) model and its variations have been dominating the travel mode choice modeling field for decades. Advantages of the MNL model include its elegant closed-form mathematical structure and its interpretable model estimation results based on random utility theory, while its main limitation is the strict statistical assumptions. Recent computational advancement has allowed easier application of machine learning models to travel behavior analysis, though research in this field is not thorough or conclusive. In this paper, we explore the application of the extreme gradient boosting (XGB) model to travel mode choice modeling and compare the result with an MNL model, using the Delaware Valley 2012 regional household travel survey data. The XGB model is an ensemble method based on the decision-tree algorithm and it has recently received a great deal of attention and use because of its high machine learning performance. The modeling and predicting results of the XGB model and the MNL model are compared by examining their multi-class predictive errors. We found that the XGB model has overall higher prediction accuracy than the MNL model especially when the dataset is not extremely unbalanced. The MNL model has great explanatory power and it also displays strong consistency between training and testing errors. Multiple trip characteristics, socio-demographic traits, and built-environment variables are found to be significantly associated with people’s mode choices in the region, but mode-specific travel time is found to be the most determinant factor for mode choice.


2018 ◽  
Vol 32 ◽  
pp. 268-278 ◽  
Author(s):  
M.C. de Haas ◽  
R.G. Hoogendoorn ◽  
C.E. Scheepers ◽  
S. Hoogendoorn-Lanser

2014 ◽  
Vol 7 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Rolf Moeckel ◽  
Rhett Fussell ◽  
Rick Donnelly

Sign in / Sign up

Export Citation Format

Share Document