avian biodiversity
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 29)

H-INDEX

21
(FIVE YEARS 3)

Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 656
Author(s):  
Christopher J. Butler ◽  
Chad King ◽  
Dan L. Reinking

Citizen science may offer a way to improve our knowledge of the spatial distribution of biodiversity and endemism, as the data collected by this method can be integrated into existing data sources to provide a more robust understanding of broad scale patterns of species richness. We explored whether data collected by citizen scientists agree on identifying regions of high avian species richness in a well-studied state. We compiled and examined the number of bird species detected in each of the 77 counties of Oklahoma based on published range maps, museum collections, and by five citizen science methods: the USGS Breeding Bird Survey, the Oklahoma Breeding Bird Atlas, eBird, the Oklahoma Winter Bird Atlas, and National Audubon Society Christmas Bird Counts. We also quantified the number of species of conservation concern recorded by each method in each county. A total of 460 species were reported across the state, with the total number of species detected by each method ranging from 40% of this total (Winter Bird Atlas) to 94% of this total (eBird). In general, species totals were poorly correlated across methods, with only six of 21 combinations (28.6%) showing significant correlations. Total species numbers recorded in each county were correlated with human population density and county area, but not with mean annual temperature or precipitation. The total number of species of conservation concern was correlated with the total number of species detected, county area, and precipitation. Most of the citizen science methods examined in this study were not explicitly designed to identify regions of high biodiversity and so efforts to use these methods for this purpose should be employed only cautiously and with a thorough understanding of potential biases.


2021 ◽  
Author(s):  
deepali chatrath ◽  
Lipakshi Bhatt ◽  
Janmejay Sethy ◽  
Meesala K. Murthy

Abstract Green spaces in cities especially in the capital city of India provide necessary recreational, social and psychological benefits to stressing residents of the city. Cities and towns depict the extreme human-modified environments with only remnants of the original habitats present. Study undertaken to know the abundance, diversity and species richness of avian fauna in urban protected landscapes of Delhi, NCR. In the following paper, the methods include data is extracted from e-Bird of past 40 years to illustrate the changing trend of bird species from 1980-2019 from 7 greenspaces of Delhi-NCR which are Aravalli Biodiversity Park, Asola Bhatti Wildlife Sanctuary, Deer Park, Dheerpur Wetland, National Zoological Park, Northern Ridge, Okhla Bird Sanctuary, Sanjay Van, Yamuna Biodiversity Park and analysed as box plots using PAST. The result showed a varied trend from 1980-2019, which included the usage of e-Bird by the period. The result indicated that the recent decade is well updated with data on e-Bird, hence several birds’ individual is maximumly observed from 2011-2019. The study has shown the wavy trend from 1980-2019 in species composition in the capital city of India. This also suggest that people have started recording observation on a single platform and shown interest in last decade. This study will lead to taking the necessary step to maintain the avian biodiversity in the green spaces of the capital city- Delhi-NCR.


2021 ◽  
Author(s):  
◽  
Jennifer Glynn Vinton

<p>Avian community composition fluctuates across the landscape at different scales of space and time. These fluctuations may be modified at the broader scale of landscape and at the local scale of habitat patch. A species' ecology also influences its occurrence and abundance in the landscape. This thesis investigates the spatial and temporal distribution of the avian community in Wellington. Wellington is an interesting case study because it has a diverse range of landscapes influenced by the proximity of hills to the coast (see Appendix 3). I assess the effect of landscape classification on the richness and abundance of birds and the role of fine patch structure in shaping this distribution. My study was located within a 5-km radius of Wellington City's central business district (41 degrees 16' S, 174 degrees 46' E). I used six strip-transects divided into 400m length segments that traversed through high to lower density residential suburbs and green space inter-digitated with built habitat, and established five-minute count (FMBC) points at each segment interval along these routes for a total of 49 points. I used ArcGIS to analyse the habitat patch types in the 100-m areas surrounding the FMBC. I recorded avian species type and abundance along the strips and at the FMBC during the morning and evening. A total of 35 bird species and 10966 individuals were recorded along the strip-transects and 34 bird species and 5960 individuals at the FMBCs. House sparrow, then starling and blackbacked gull, rock pigeon, blackbird and silvereye were the most common and widely spread species. Results indicated that landscape type modified avian biodiversity with the highest number of species (S) recorded in green landscapes (n = 10, S = 15.9) and the lowest in wharf littoral (n = 2, S = 7.5) and low-density commercial sites (n = 3, S = 6.67). The diversity of the landscape within an area did not influence avian biodiversity. I found that total species abundance did not change across the landscape but that the species' ecology did influence where it occurred and its abundance in the landscape. Dietary diversity particularly influenced a species' abundance. Both season and time of day altered species richness and abundance, with lower values of richness recorded in autumn (morning period = 13.5, evening period = 10.7). I found that avian communities in the Wellington urban area were dominated by six common species but that many more species were present in much lower numbers at fewer sites. Results showed an inverse relationship between species richness and abundance - while the greater biomass (abundance) of birds concentrated at FMBC within the built commercial centre and surrounding higher density housing areas, richness increased with distance from the built centre to residential and green sites. I found no relationship between species richness and the total number of individuals present at any point, and the total biomass and abundance of birds was also independent of patch size. Neither habitat patch diversity nor average patch size influenced species diversity across the community of birds, but the effect of average patch size was less at patches between 300 and 1500 metres. The abundance of some individuals in their favoured patch type did vary in response to patch structure with the strongest relationships seen for blackbird and house sparrow. These results suggest that birds are responding to cues at the larger scale of landscape first rather than to fine patch structure within the urban setting, and therefore that landscape is a more important influence in driving bird biodiversity.</p>


2021 ◽  
Author(s):  
◽  
Jennifer Glynn Vinton

<p>Avian community composition fluctuates across the landscape at different scales of space and time. These fluctuations may be modified at the broader scale of landscape and at the local scale of habitat patch. A species' ecology also influences its occurrence and abundance in the landscape. This thesis investigates the spatial and temporal distribution of the avian community in Wellington. Wellington is an interesting case study because it has a diverse range of landscapes influenced by the proximity of hills to the coast (see Appendix 3). I assess the effect of landscape classification on the richness and abundance of birds and the role of fine patch structure in shaping this distribution. My study was located within a 5-km radius of Wellington City's central business district (41 degrees 16' S, 174 degrees 46' E). I used six strip-transects divided into 400m length segments that traversed through high to lower density residential suburbs and green space inter-digitated with built habitat, and established five-minute count (FMBC) points at each segment interval along these routes for a total of 49 points. I used ArcGIS to analyse the habitat patch types in the 100-m areas surrounding the FMBC. I recorded avian species type and abundance along the strips and at the FMBC during the morning and evening. A total of 35 bird species and 10966 individuals were recorded along the strip-transects and 34 bird species and 5960 individuals at the FMBCs. House sparrow, then starling and blackbacked gull, rock pigeon, blackbird and silvereye were the most common and widely spread species. Results indicated that landscape type modified avian biodiversity with the highest number of species (S) recorded in green landscapes (n = 10, S = 15.9) and the lowest in wharf littoral (n = 2, S = 7.5) and low-density commercial sites (n = 3, S = 6.67). The diversity of the landscape within an area did not influence avian biodiversity. I found that total species abundance did not change across the landscape but that the species' ecology did influence where it occurred and its abundance in the landscape. Dietary diversity particularly influenced a species' abundance. Both season and time of day altered species richness and abundance, with lower values of richness recorded in autumn (morning period = 13.5, evening period = 10.7). I found that avian communities in the Wellington urban area were dominated by six common species but that many more species were present in much lower numbers at fewer sites. Results showed an inverse relationship between species richness and abundance - while the greater biomass (abundance) of birds concentrated at FMBC within the built commercial centre and surrounding higher density housing areas, richness increased with distance from the built centre to residential and green sites. I found no relationship between species richness and the total number of individuals present at any point, and the total biomass and abundance of birds was also independent of patch size. Neither habitat patch diversity nor average patch size influenced species diversity across the community of birds, but the effect of average patch size was less at patches between 300 and 1500 metres. The abundance of some individuals in their favoured patch type did vary in response to patch structure with the strongest relationships seen for blackbird and house sparrow. These results suggest that birds are responding to cues at the larger scale of landscape first rather than to fine patch structure within the urban setting, and therefore that landscape is a more important influence in driving bird biodiversity.</p>


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12296
Author(s):  
Julie A. Jedlicka ◽  
Stacy M. Philpott ◽  
Martha L. Baena ◽  
Peter Bichier ◽  
Thomas V. Dietsch ◽  
...  

Neotropical shade-grown coffee systems are renowned for their potential to conserve avian biodiversity. Yet, little is known about food resources consumed by insectivorous birds in these systems, the extent of resource competition between resident and migratory birds, or how management of shade trees might influence diet selection. We identified arthropods in stomach contents from obligate and generalist insectivorous birds captured in mist-nets at five coffee farms in Chiapas, Mexico between 2001–2003. Overall stomach contents from 938 individuals revealed dietary differences resulting from changes in seasons, years, and foraging guilds. Of four species sampled across all management systems, Yellow-green Vireo (Vireo flavoviridis) prey differed depending on coffee shade management, consuming more ants in shaded monoculture than polyculture systems. Diets of obligate and generalist resident insectivores were 72% dissimilar with obligate insectivores consuming more Coleoptera and Araneae, and generalist insectivores consuming more Formicidae and other Hymenoptera. This suggests that obligate insectivores target more specialized prey whereas generalist insectivores rely on less favorable, chemically-defended prey found in clumped distributions. Our dataset provides important natural history data for many Nearctic-Neotropical migrants such as Tennessee Warbler (Leiothlypis peregrina; N = 163), Nashville Warbler (Leiothlypis ruficapilla; N = 69), and Swainson’s Thrush (Catharus ustulatus; N = 68) and tropical residents including Red-legged Honeycreepers (Cyanerpes cyaneus; N = 70) and Rufous-capped Warblers (Basileuterus rufifrons; N = 56). With declining arthropod populations worldwide, understanding the ecological interactions between obligate and generalist avian insectivores gives researchers the tools to evaluate community stability and inform conservation efforts.


2021 ◽  
Author(s):  
Harry F. Recher

ABSTRACT In Australia’s eucalypt forests and woodlands, co-habiting birds differ in the foraging manoeuvres or methods used to search for and take prey, the substrates and plants on which prey are found, and the heights at which foraging takes place. On the Southern Tablelands of New South Wales, eucalypt forest and woodland birds foraged on different substrates between study plots, seasons, and years. As a result, the proportions of foraging manoeuvres differed in space and time as different foraging methods were used to obtain food from different substrates. Of the 32 species tested for the summer of 1980/81, 24 foraged differently between one or more of the three plots studied. In winter, nine of 15 species on two plots foraged differently between plots. Differences in foraging were found between seasons and/or years for 20 species, including when data from individual plots were combined to test for differences in foraging between summer and winter. Of 70 comparisons of foraging behaviour for individual plots, that is, excluding combined plot data, 50 differed between seasons and/or years. Significant spatial and temporal differences in foraging were recorded for all foraging guilds. Bark and foliage foragers differed most frequently between pairs of plots in all seasons and years, with aerial foragers showing the fewest differences. Between seasons and years differences were greatest among ground-foragers and foliage-foragers where respectively 76% and 80% of intraspecies comparisons on individual plots differed. The differences were the result of temporal and spatial differences in the types and abundances of foraging substrates and the prey available to foraging birds. Each species has its own unique requirements and management targeted at one or a few species will disadvantage others. Consequently temporal and spatial habitat heterogeneity is necessary for the conservation of avian biodiversity.


2021 ◽  
Author(s):  
Ashlee A Abrantes ◽  
William D Brown

Understanding anthropogenic alterations to land use and their effects can inform conservation efforts in tropical biodiversity hotspots. In 2004 the Indonesian Palau Penida Archipelago, off the coast of Bali, was established as an unofficial bird reserve; however, studies of the island's land use and avian biodiversity were never conducted and have not been monitored. I surveyed birds across 32 transects in land use categories designated: agriculture, deforested, developed, and forest. Forest transects presented the greatest endemic species richness, but overall, Shannon diversity different significantly among land use categories, particularly forested and deforested. ANOVA indicated exotic bird density was significantly higher than endemic bird density across all transects. Birds serve as a common biodiversity barometer and this study can serve to inform land use management decisions on the Archipelago and throughout reserves and protected areas throughout the tropics.


2021 ◽  
pp. e01660
Author(s):  
Sharifah Nur Atikah ◽  
Muhammad Syafiq Yahya ◽  
Ahmad Razi Norhisham ◽  
Norizah Kamarudin ◽  
Ruzana Sanusi ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 889-896
Author(s):  
Claudia S. Abad ◽  
Markus P. Tellkamp ◽  
Isidro R. Amaro ◽  
Lilian M. Spencer

Background and Aim: Avian malaria is a tropical disease caused by protozoans of the genera Plasmodium and Haemoproteus. As a nonlethal disease, avian malaria can affect the lifespan and reproductive rate of birds. If there is a differential effect depending on bird species, then this disease might have a significant effect on avian biodiversity. The current study aimed to determine the incidence of Plasmodium in hummingbirds in humid premontane forest areas. Materials and Methods: Blood samples (n=60) were collected from hummingbirds from two areas (Santuario de Aves Milpe and Hacienda Puyucunapi) of Pichincha Province, Ecuador. Prevalence and parasitemia were determined by microscopic examination of blood smears stained with Giemsa reagent. Both study sites are part of a 1000 m elevational gradient; hence, elevation was used as a predictor variable for prevalence and parasitemia levels in a Mann–Whitney U-test. This test was also used to test for a sex bias. Results: This study reports on a total of 12 bird species that inhabit both study sites. At Milpe, the lower elevation site, a prevalence of 100% was recorded, whereas at Puyucunapi, the prevalence was 96%. The combined prevalence was 97%. Elevation and sex did not influence prevalence nor parasitemia in hummingbirds. Conclusion: This study does not suggest a significant elevation or sex bias on prevalence and parasitemia in hummingbirds.


Sign in / Sign up

Export Citation Format

Share Document