transparent coatings
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 27)

H-INDEX

15
(FIVE YEARS 3)

Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1448
Author(s):  
Xuan Zhang ◽  
Yuandong Chen ◽  
Wenqiao Zhang ◽  
Yanli Zhong ◽  
Pei Lei ◽  
...  

Transparent conductive films (TCFs) have received much research attention in the area of aeronautical canopies. However, bad wear, corrosion resistance and weak erosion performance of TCFs dramatically limit their scalable application in the next-generation aeronautical and optoelectronic devices. To address these drawbacks, three types of optically transparent coatings, including acrylic, silicone and polyurethane (PU) coatings were developed and comparatively investigated ex situ in terms of Taber abrasion, nanoindentation and sand erosion tests to improve the wear-resistance and sand erosion abilities of ITO-coated PMMA substrates. To elucidate the sand erosion failure of the coatings, the nanoindentation technique was employed for quantitative assessment of the shape recovery abilities under probe indentation. Results show that the PU topcoats can greatly enhance the sand erosion properties, which were superior to those of acrylic and silicone topcoats. This result can be attributed to the good toughness and self-healing properties of PU topcoats. Additionally, high hardness and good Taber abrasion properties of the ITO films and silicone topcoats did not have an obvious or affirmatory effect on the sand erosion abilities, based on their brittleness and irreparable properties under sand erosion.


2021 ◽  
Vol 8 ◽  
Author(s):  
G. L. Kabongo ◽  
B. M. Mothudi ◽  
M. S. Dhlamini

Energy is the driving force behind the upcoming industrial revolution, characterized by connected devices and objects that will be perpetually supplied with energy. Moreover, the global massive energy consumption increase requires appropriate measures, such as the development of novel and improved renewable energy technologies for connecting remote areas to the grid. Considering the current prominent market share of unsustainable energy generation sources, inexhaustible and clean solar energy resources offer tremendous opportunities that, if optimally exploited, might considerably help to lessen the ever-growing pressure experienced on the grid nowadays. The R&D drive to develop and produce socio-economically viable solar cell technologies is currently realigning itself to manufacture advanced thin films deposition techniques for Photovoltaic solar cells. Typically, the quest for the wide space needed to deploy PV systems has driven scientists to design multifunctional nanostructured materials for semitransparent solar cells (STSCs) technologies that can fit in available household environmental and architectural spaces. Specifically, Plasma Enhanced Chemical Vapor Deposition (PECVD) technique demonstrated the ability to produce highly transparent coatings with the desired charge carrier mobility. The aim of the present article is to review the latest semi-transparent PV technologies that were impactful during the past decade with special emphasis on PECVD-related technologies. We finally draw some key recommendations for further technological improvements and sustainability.


2021 ◽  
Vol 3 ◽  
Author(s):  
Joana Farinhas ◽  
Sandra F. H. Correia ◽  
Lianshe Fu ◽  
Alexandre M. P. Botas ◽  
Paulo S. André ◽  
...  

Photovoltaic (PV) devices based on organic heterojunctions have recently achieved remarkable power conversion efficiency (PCE) values. However, photodegradation is often a cause of dramatic drops in device performance. The use of ultraviolet (UV)-absorbing luminescent downshifting (LDS) layers can be a mitigation strategy to simultaneously filter UV radiation reaching the device and reemit it with lower energy in the visible spectral range, matching the maximum spectral response of the PV cells and thus enabling the increase of the photocurrent generated by the cell. In this work, we report the use of a Eu3+-doped siliceous-based organic–inorganic hybrid as a coating on organic solar cells based on the PTB7-Th:ITIC bulk heterojunction with the purpose of increasing their performance. We found that the applied coatings yield a PCE enhancement of ∼22% (from 3.1 to 3.8%) in solar cells with spin-coated layers, compared with the bare solar cells, which is among the highest performance enhancements induced by plastic luminescent coatings.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1220
Author(s):  
Jan Honzíček ◽  
Eliška Matušková ◽  
Štěpán Voneš ◽  
Jaromír Vinklárek

This study describes the catalytic performance of an iron(III) complex bearing a phthalocyaninato-like ligand in two solvent-borne and two high-solid alkyd binders. Standardized mechanical tests revealed strong activity, which appeared in particular cases at concentrations about one order of magnitude lower than in the case of cobalt(II) 2-ethylhexanoate, widespread used in paint-producing industry. The effect of the iron(III) compound on autoxidation process, responsible for alkyd curing, was quantified by kinetic measurements by time-resolved infrared spectroscopy and compared with several primary driers. Effect of the drier concentration on coloration of transparent coatings was determined by UV–Vis spectroscopy.


Author(s):  
Abderrahmane Hamdi ◽  
Julie Chalon ◽  
Pascal Laurent ◽  
Benoit Dodin ◽  
Elhadj Dogheche ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document