fire characteristics
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 58)

H-INDEX

19
(FIVE YEARS 3)

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 11
Author(s):  
Adam Dorsz ◽  
Mirosław Lewandowski

The article discusses the analysis of the possible development of hazards associated with the operation of vehicles equipped with an electric drive using the example of passenger cars. The authors review the problem of the safety of people and property resulting from the occurrence of a fire in an electric passenger car, in the context of fires that have occurred in recent years. Particular attention was paid to the analysis of the state of knowledge concerning the characteristics of the fire progression in an electric car, its heat release rate curve [HRR], total heat release [THR], heat of combustion and factors affecting the fire progression. In this paper, an attempt was made to compare the fire characteristics of an electric car and a passenger car equipped with an internal combustion engine together with an estimation, using CFD simulations, of the impact on the safety of people and property in closed structures such as underground garages or road tunnels. The need for further development of research on electric cars equipped with large lithium-ion batteries in the context of their fire safety is indicated. The authors pay attention to the insufficient amount of data available to understand the fire characteristics of modern electric cars, which would enable the appropriate design of fire safety systems in building structures.


Fuel ◽  
2021 ◽  
Vol 306 ◽  
pp. 121659
Author(s):  
Yongliang Xie ◽  
Na Lv ◽  
Xujiang Wang ◽  
Dejian Wu ◽  
Shimao Wang

2021 ◽  
Vol 5 (2) ◽  
pp. 94-100
Author(s):  
Mohsen Javanmiri pour

Fires are an integral part of many terrestrial biomes and a major source of disturbance in nature. The purpose of this study is to assess the causes and characteristics of fires in the Zagros ecosystem in ten consecutive years from 2011 to 2020. To conduct this research, wholly fire events that occurred in natural areas in the Gilan-e Gharb basin during the fire season detailed in a decade. In practice, immediately after informed of the occurrence of fires in natural areas, research data recorded. Totally, 233 event fires have occurred in the ten years from 2011 to 2020. The fire affected approximately 11,420 hectares of natural areas. The highest frequency of monthly fires during the months of the fire season includes 53, 44, and 40 events, which concern August, July, and September, respectively. The frequency of fires in different components of natural resources shows that the highest and the least frequency includes non-wooded pastures (44.6±5.6) and mixed Forest-rangeland (14.25±4.11). The most causes of fire in natural areas include recreation and hunting (43.3±16.1). The maximum frequency of the fire area includes <100 hectares’ classes (83.6±20.57). Most fires suppressed in a very short period (64.27±26.17). Daneh Khoshk, Nawdar, Poshteh, Peikoleh, Belaleh, Cheleh – Ghalajeh as well as Chikan regions include a high risk of fire. The issues connected to the fire are multidimensional. It deals with climatic and habitat factors, social issues, and the nature conservation culture institutionalization among the local people. To reduce the fire and the resulting damage, it is necessary to perform basic proceedings in whole fields.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
David A. Peterson ◽  
Michael D. Fromm ◽  
Richard H. D. McRae ◽  
James R. Campbell ◽  
Edward J. Hyer ◽  
...  

AbstractThe Black Summer fire season of 2019–2020 in southeastern Australia contributed to an intense ‘super outbreak’ of fire-induced and smoke-infused thunderstorms, known as pyrocumulonimbus (pyroCb). More than half of the 38 observed pyroCbs injected smoke particles directly into the stratosphere, producing two of the three largest smoke plumes observed at such altitudes to date. Over the course of 3 months, these plumes encircled a large swath of the Southern Hemisphere while continuing to rise, in a manner consistent with existing nuclear winter theory. We connect cause and effect of this event by quantifying the fire characteristics, fuel consumption, and meteorology contributing to the pyroCb spatiotemporal evolution. Emphasis is placed on the unusually long duration of sustained pyroCb activity and anomalous persistence during nighttime hours. The ensuing stratospheric smoke plumes are compared with plumes injected by significant volcanic eruptions over the last decade. As the second record-setting stratospheric pyroCb event in the last 4 years, the Australian super outbreak offers new clues on the potential scale and intensity of this increasingly extreme fire-weather phenomenon in a warming climate.


2021 ◽  
Vol 35 (3) ◽  
pp. 1-6
Author(s):  
Soo-Gyeong Park ◽  
Sin-Woo Kim ◽  
Eui-Ju Lee

The lithium-ion battery is the most popular type of secondary battery because of its high energy density. It has been widely used in mobile power and energy storage systems. However, several accidents can occur in systems using lithium-ion batteries, and most of the reported losses have resulted from battery fires and explosions. In this study, a cone calorimeter experiment was performed to investigate the fire characteristics of lithium-ion batteries and assess their heat release rate (HRR), which is the most representative property for fire events. Fires involving cylindrical standard batteries consist of two combustion stages. The first burning stage is due to the package material and intercalated lithium of the battery, and the second stage is attributed to the thermal runaway reactions of the electrolyte. The second combustion stage has a greater peak HRR than the first stage and is accompanied by a violent explosion. In a comparison of the HRRs with the oxygen consumption rate, the HRRs measured on the basis of the mass loss rate show higher maximum values and extremely narrow heat release times.


Author(s):  
Marián Škvarka ◽  
Richard Kuracina ◽  
Zuzana Szabová

Abstract Dust is a product or by-product in many industries. To ensure effective measures of explosion prevention, it is necessary to know the fire properties of dispersed and settled dust. These parameters cannot be calculated, but can be determined on the base of measurements in standard equipment. The article deals with the measurement of fire properties of polyethylene. The values of the minimum ignition temperature of settled and dispersed dust (MIT) and the values of explosion characteristics of polyethylene dust cloud lower explosion limit (LEL), maximum pressure Pmax and maximum rate of pressure rise (dp/dt)max were measured. The measurements were performed on the equipment according to the STN EN 80079-20-2: 2016 Standard Explosive atmospheres - Part 20-2: Material characteristics - Combustible dust test methods and according to the STN EN 14034 + A1: 2011 Standard Determination of explosion characteristics of dust clouds. The MIT of the settled dust was not determined (the sample melted), the MIT of the dispersed dust was 435 °C. The maximum explosion pressure Pmax reached 7.0 bar, and the maximum rate of pressure rise dP/dt was 37.5 bar.s−1.


2021 ◽  
Author(s):  
Umberto Berardi ◽  
Nicholas Dembsey

This paper discusses the main challenges of using fiber reinforced polymers (FRPs) in architectural applications. Architects are showing increased interest in the use of FRPs in modern buildings thanks to FRPs’ ability to allow cost effective realization of unique shapes and flexible aesthetics, while accommodating architectural designs and needs. The long-term durability, weathering resistance, and the exceptional mechanical properties have recently suggested the adoption of FRPs for building façade systems in an increasing number of buildings worldwide. However, some challenges for a wider adoption of FRPs in buildings are represented by the environmental and thermal aspects of their production, as well as their resistance to the expected “fire loads”. This last aspect often raises many concerns, which often require expensive fire tests. In this paper, the results of cone calorimeter tests are compared with software simulations to evaluate the possibility of designing FRPs on the computer as opposed to current design practice that involves iterative use of fire testing. The comparison shows that pyrolysis simulations related to FRPs are still not an effective way to design fire safe FRPs for architectural applications.


2021 ◽  
Author(s):  
Umberto Berardi ◽  
Nicholas Dembsey

This paper discusses the main challenges of using fiber reinforced polymers (FRPs) in architectural applications. Architects are showing increased interest in the use of FRPs in modern buildings thanks to FRPs’ ability to allow cost effective realization of unique shapes and flexible aesthetics, while accommodating architectural designs and needs. The long-term durability, weathering resistance, and the exceptional mechanical properties have recently suggested the adoption of FRPs for building façade systems in an increasing number of buildings worldwide. However, some challenges for a wider adoption of FRPs in buildings are represented by the environmental and thermal aspects of their production, as well as their resistance to the expected “fire loads”. This last aspect often raises many concerns, which often require expensive fire tests. In this paper, the results of cone calorimeter tests are compared with software simulations to evaluate the possibility of designing FRPs on the computer as opposed to current design practice that involves iterative use of fire testing. The comparison shows that pyrolysis simulations related to FRPs are still not an effective way to design fire safe FRPs for architectural applications.


Sign in / Sign up

Export Citation Format

Share Document