aircraft recovery
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 8)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Zhouchun Huang ◽  
Xiaodong Luo ◽  
Xianfei Jin ◽  
Sureshan Karichery

2020 ◽  
Vol 117 ◽  
pp. 104892 ◽  
Author(s):  
J. Vink ◽  
B.F. Santos ◽  
W.J.C. Verhagen ◽  
I. Medeiros ◽  
R. Filho

2020 ◽  
Vol 92 (5) ◽  
pp. 685-700 ◽  
Author(s):  
Axel Yezeguelian ◽  
Askin T. Isikveren

Purpose When comparing and contrasting different types of fixed-wing military aircraft on the basis of an energetic efficiency figure-of-merit, unmanned aerial vehicles (UAVs) dedicated to tactical medium-altitude long-endurance (MALE) operations appear to have significant potential when hybrid-electric propulsion and power systems (HEPPS) are implemented. Beginning with a baseline Eulair drone, this paper aims to examine the feasibility of retro-fitting with an Autarkic-Parallel-HEPPS architecture to enhance performance of the original single diesel engine. Design/methodology/approach In view of the low gravimetric specific energy performance attributes of batteries in the foreseeable future, the best approach was found to be one in which the Parallel-HEPPS architecture has the thermal engine augmented by an organic rankine cycle (ORC). For this study, with the outer mould lines fixed, the goal was to increase endurance without increasing the Eulair drone maximum take-off weight beyond an upper limit of +10%. The intent was to also retain take-off distance and climb performance or, where possible, improve upon these aspects. Therefore, as the focus of the work was on power scheduling, two primary control variables were identified as degree-of-hybridisation for useful power and cut-off altitude during the en route climb phase. Quasi-static methods were used for technical sub-space modelling, and these modules were linked into a constrained optimisation algorithm. Findings Results showed that an Autarkic-Parallel-HEPPS architecture comprising an ORC thermal energy recovery apparatus and high-end year-2020 battery, the endurance of the considered aircraft could be increased by 11%, i.e. a total of around 28 h, including de-icing system, in-flight recharge and emergency aircraft recovery capabilities. The same aircraft with the de-icing functionality removed resulted in a 20% increase in maximum endurance to 30 h. Practical implications Although the adoption of Series/Parallel-HEPPS only solutions do tend to generate questionable improvements in UAV operational performance, combinations of HEPPS with energy recovery machines that use, for example, an ORC, were found to have merit. Furthermore, such architectural solutions could also offer opportunity to facilitate additional functions like de-icing and emergency aircraft recovery during engine failure, which is either not available for UAVs today or prove to be prohibitive in terms of operational performance attributes when implemented using a conventional PPS approach. Originality/value This technical paper highlights a new degree of freedom in terms of power scheduling during climbing transversal flight operations. A control parameter of cut-off altitude for all types of HEPPS-based aircraft should be introduced into the technical decision-making/optimisation/analysis scheme and is seen to be a fundamental aspect when conducting trade-studies with respect to degree-of-hybridisation for useful power.


2020 ◽  
Vol 65 (2) ◽  
pp. 1-13 ◽  
Author(s):  
Praneet Vayalali ◽  
Michael McKay ◽  
Jayanth Krishnamurthi ◽  
Farhan Gandhi

A flight simulation model for the UH-60 Black Hawk, based on Sikorsky's GenHel model, is modified to simulate a locked failure of a main rotor swashplate servo actuator, which is compensated by using the stabilator as a redundant control effector. Steady-state trim analysis is performed to demonstrate feasibility of trimmed flight in various conditions with different locked servo actuator positions for the forward, aft, and lateral actuators. A model-following, linear dynamic inversion controller is implemented and modified to account for locked actuator position. Postfailure, the controls are reconfigured to partially reallocate the control authority in the longitudinal axis from the main rotor longitudinal cyclic to the stabilator. This is done by manipulation of only the control allocation relating pilot stick inputs to servo actuator positions, whereas the feedback control gains and mechanical rigging between servo actuators and rotor pitch controls remain identical to the baseline. Flight simulation results demonstrate the ability of this reallocation to compensate for locked failure of the forward main rotor swashplate servo actuator, as well as the ability of the aircraft to decelerate from cruise at 120 kt to 50 kt, slower than the published safe rolling landing speed of 60 kt. A similar range of locked positions of the forward and aft actuators is demonstrated to be feasible for aircraft recovery using control of the stabilator. Feasibility of aircraft recovery for locked positions of the lateral servo actuator is also considered, as well as the effect of variation in gross weight, speed of actuator locking, and delays in fault detection and identification.


2018 ◽  
Vol 90 (6) ◽  
pp. 877-884
Author(s):  
Tomasz Rogalski

Purpose This paper aims to present the idea of an automatic control system dedicated to small manned and unmanned aircraft performing manoeuvres other than those necessary to perform a so-called standard flight. The character of these manoeuvres and the range of aircraft flight parameter changes restrict application of standard control algorithms. In many cases, they also limit the possibility to acquire complete information about aircraft flight parameters. This paper analyses an alternative solution that can be applied in such cases. The loop manoeuvre, an element of aerobatic flight, was selected as a working example. Design/methodology/approach This paper used theoretical discussion and breakdowns to create basics for designing structures of control algorithms. A simplified analytical approach was then applied to tune regulators. Research results were verified in a series of computer-based software-in-the-loop rig test computer simulations. Findings The structure of the control system enabling aerobatic flight was found and the method for tuning regulators was also created. Practical implications The findings could be a foundation for autopilots working in non-conventional flight scenarios and automatic aircraft recovery systems. Originality/value This paper presents the author’s original approach to aircraft automated control where high precision control is not the priority and flight parameters cannot be precisely measured or determined.


Sign in / Sign up

Export Citation Format

Share Document