simplified reference tissue model
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 11)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
pp. 0271678X2110652
Author(s):  
Joseph B Mandeville ◽  
Michael A Levine ◽  
John T Arsenault ◽  
Wim Vanduffel ◽  
Bruce R Rosen ◽  
...  

We report a novel forward-model implementation of the full reference tissue model (fFTRM) that addresses the fast-exchange approximation employed by the simplified reference tissue model (SRTM) by incorporating a non-zero dissociation time constant from the specifically bound compartment. The forward computational approach avoided errors associated with noisy and nonorthogonal basis functions using an inverse linear model. Compared to analysis by a multilinear single-compartment reference tissue model (MRTM), fFTRM provided improved accuracy for estimation of binding potentials at early times in the scan, with no worse reproducibility across sessions. To test the model’s ability to identify small focal changes in binding potential using a within-scan challenge, we employed a nonhuman primate model of focal dopamine release elicited by deep brain microstimulation remote to ventral striatum (VST) during imaging by simultaneous PET and fMRI. The new model reported an unambiguously lateralized response in VST consistent with fMRI, whereas the MRTM-derived response was not lateralized and was consistent with simulations of model bias. The proposed model enabled better accuracy in PET [11C]raclopride displacement studies and may also facilitate challenges sooner after injection, thereby recovering some sensitivity lost to radioactive decay of the PET tracer.


2021 ◽  
pp. 0271678X2110310
Author(s):  
Suzanne L Baker ◽  
Karine Provost ◽  
Wesley Thomas ◽  
AJ Whitman ◽  
Mustafa Janabi ◽  
...  

The [18F]-JNJ-64326067-AAA ([18F]-JNJ-067) tau tracer was evaluated in healthy older controls (HCs), mild cognitive impairment (MCI), Alzheimer’s disease (AD), and progressive supranuclear palsy (PSP) participants. Seventeen subjects (4 HCs, 5 MCIs, 5 ADs, and 3 PSPs) received a [11C]-PIB amyloid PET scan, and a tau [18F]-JNJ-067 PET scan 0-90 minutes post-injection. Only MCIs and ADs were amyloid positive. The simplified reference tissue model, Logan graphical analysis distribution volume ratio, and SUVR were evaluated for quantification. The [18F]-JNJ-067 tau signal relative to the reference region continued to increase to 90 min, indicating the tracer had not reached steady state. There was no significant difference in any bilateral ROIs for MCIs or PSPs relative to HCs; AD participants showed elevated tracer relative to controls in most cortical ROIs (P < 0.05). Only AD participants showed elevated retention in the entorhinal cortex. There was off-target signal in the putamen, pallidum, thalamus, midbrain, superior cerebellar gray, and white matter. [18F]-JNJ-067 significantly correlated (p < 0.05) with Mini-Mental State Exam in entorhinal cortex and temporal meta regions. There is clear binding of [18F]-JNJ-067 in AD participants. Lack of binding in HCs, MCIs and PSPs suggests [18F]-JNJ-067 may not bind to low levels of AD-related tau or 4 R tau.


Author(s):  
Fiona Heeman ◽  
Janine Hendriks ◽  
Isadora Lopes Alves ◽  
Nelleke Tolboom ◽  
Bart N. M. van Berckel ◽  
...  

Abstract Purpose Moderate-to-high correlations have been reported between the [11C]PiB PET-derived relative tracer delivery rate R1 and relative CBF as measured using [15O]H2O PET, supporting its use as a proxy of relative CBF. As longitudinal PET studies become more common for measuring treatment efficacy or disease progression, it is important to know the intrinsic variability of R1. The purpose of the present study was to determine this through a retrospective data analysis. Procedures Test-retest data belonging to twelve participants, who underwent two 90 min [11C]PiB PET scans, were retrospectively included. The voxel-based implementation of the two-step simplified reference tissue model with cerebellar grey matter as reference tissue was used to compute R1 images. Next, test-retest variability was calculated, and test and retest R1 measures were compared using linear mixed effect models and a Bland-Altman analysis. Results Test-retest variability was low across regions (max. 5.8 %), and test and retest measures showed high, significant correlations (R2=0.92, slope=0.98) and a negligible bias (0.69±3.07 %). Conclusions In conclusion, the high precision of [11C]PiB R1 suggests suitable applicability for cross-sectional and longitudinal studies.


Author(s):  
Elijah Mak ◽  
Monika Grigorova ◽  
Jessica Beresford-Webb ◽  
Maura Malpetti ◽  
Madeline Walpert ◽  
...  

Abstract PET imaging of glucose hypometabolism and amyloid deposition are two well-established methods to evaluate preclinical changes in Alzheimer’s disease and people with Down syndrome. However, the use of both imaging modalities may overburden participants, particularly those with intellectual disabilities and cognitive impairment. The relative tracer delivery of the [11C]-Pittsburgh Compound B has been proposed as a viable surrogate for cerebral perfusion. Here, we studied the impact of amyloid pathology on perfusion changes in Down syndrome and evaluated its associations with cognitive impairment. 47 adults with Down syndrome underwent the [11C]-Pittsburgh Compound B imaging and structural imaging. The structural data were processed with Freesurfer to obtain anatomical segmentations and cortical thickness. The relative tracer delivery from [11C]-Pittsburgh Compound B was derived using a simplified reference tissue model. The sample was stratified into those with minimal amyloid burden (n = 25) and those with elevated amyloid (n = 22). We found significant and widespread reductions of cerebral perfusion in those with elevated amyloid burden, independent of age, gender, cognitive function and cortical thickness. In addition, cerebral perfusion was associated with the cognitive impairment amongst the Down syndrome group with elevated amyloid burden. These findings highlight the promising utility of the relative tracer delivery of the [11C]-Pittsburgh Compound B as a surrogate index in clinical trials for monitoring disease progression or tracking physiologic changes over time in Down syndrome.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fiona Heeman ◽  
◽  
Janine Hendriks ◽  
Isadora Lopes Alves ◽  
Rik Ossenkoppele ◽  
...  

Abstract Background The standard reference region (RR) for amyloid-beta (Aβ) PET studies is the cerebellar grey matter (GMCB), while alternative RRs have mostly been utilized without prior validation against the gold standard. This study compared five commonly used RRs to gold standard plasma input-based quantification using the GMCB. Methods Thirteen subjects from a test–retest (TRT) study and 30 from a longitudinal study were retrospectively included (total: 17 Alzheimer’s disease, 13 mild cognitive impairment, 13 controls). Dynamic [11C]PiB PET (90 min) and T1-weighted MR scans were co-registered and time–activity curves were extracted for cortical target regions and the following RRs: GMCB, whole cerebellum (WCB), white matter brainstem/pons (WMBS), whole brainstem (WBS) and eroded subcortical white matter (WMES). A two-tissue reversible plasma input model (2T4k_Vb) with GMCB as RR, reference Logan and the simplified reference tissue model were used to derive distribution volume ratios (DVRs), and standardized uptake value (SUV) ratios were calculated for 40–60 min and 60–90 min intervals. Parameter variability was evaluated using TRT scans, and correlations and agreements with the gold standard (DVR from 2T4k_Vb with GMCB RR) were also assessed. Next, longitudinal changes in SUVs (both intervals) were assessed for each RR. Finally, the ability to discriminate between visually Aβ positive and Aβ negative scans was assessed. Results All RRs yielded stable TRT performance (max 5.1% variability), with WCB consistently showing lower variability. All approaches were able to discriminate between Aβ positive and Aβ negative scans, with highest effect sizes obtained for GMCB (range − 0.9 to − 0.7), followed by WCB (range − 0.8 to − 0.6). Furthermore, all approaches provided good correlations with the gold standard (r ≥ 0.78), while the highest bias (as assessed by the regression slope) was observed using WMES (range slope 0.52–0.67), followed by WBS (range slope 0.58–0.92) and WMBS (range slope 0.62–0.91). Finally, RR SUVs were stable across a period of 2.6 years for all except WBS and WMBS RRs (60–90 min interval). Conclusions GMCB and WCB are considered the best RRs for quantifying amyloid burden using [11C]PiB PET.


2020 ◽  
pp. 0271678X2096424
Author(s):  
Hayel Tuncel ◽  
Ronald Boellaard ◽  
Emma M Coomans ◽  
Erik FJ de Vries ◽  
Andor WJM Glaudemans ◽  
...  

[11C]UCB-J is a novel radioligand that binds to synaptic vesicle glycoprotein 2A (SV2A). The main objective of this study was to determine the 28-day test–retest repeatability (TRT) of quantitative [11C]UCB-J brain positron emission tomography (PET) imaging in Alzheimer’s disease (AD) patients and healthy controls (HCs). Nine HCs and eight AD patients underwent two 60 min dynamic [11C]UCB-J PET scans with arterial sampling with an interval of 28 days. The optimal tracer kinetic model was assessed using the Akaike criteria (AIC). Micro-/macro-parameters such as tracer delivery (K1) and volume of distribution (VT) were estimated using the optimal model. Data were also analysed for simplified reference tissue model (SRTM) with centrum semi-ovale (white matter) as reference region. Based on AIC, both 1T2k_VB and 2T4k_VB described the [11C]UCB-J kinetics equally well. Analysis showed that whole-brain grey matter TRT for VT, DVR and SRTM BPND were –2.2% ± 8.5, 0.4% ± 12.0 and –8.0% ± 10.2, averaged over all subjects. [11C]UCB-J kinetics can be well described by a 1T2k_VB model, and a 60 min scan duration was sufficient to obtain reliable estimates for both plasma input and reference tissue models. TRT for VT, DVR and BPND was <15% (1SD) averaged over all subjects and indicates adequate quantitative repeatability of [11C]UCB-J PET.


2020 ◽  
pp. 0271678X2091802
Author(s):  
Fiona Heeman ◽  
Maqsood Yaqub ◽  
Isadora Lopes Alves ◽  
Kerstin Heurling ◽  
Santiago Bullich ◽  
...  

Global and regional changes in cerebral blood flow (CBF) can result in biased quantitative estimates of amyloid load by PET imaging. Therefore, the current simulation study assessed effects of these changes on amyloid quantification using a reference tissue approach for [18F]flutemetamol and [18F]florbetaben. Previously validated pharmacokinetic rate constants were used to simulate time-activity curves (TACs) corresponding to full dynamic and dual-time-window acquisition protocols. CBF changes were simulated by varying the tracer delivery ( K1) from +25 to −25%. The standardized uptake value ratio (SUVr) was computed and TACs were fitted using reference Logan (RLogan) and the simplified reference tissue model (SRTM) to obtain the relative delivery rate ( R1) and volume of distribution ratio (DVR). RLogan was least affected by CBF changes ( χ2 = 583 p <  0.001, χ2 = 81 p <  0.001, for [18F]flutemetamol and [18F]florbetaben, respectively) and the extent of CBF sensitivity generally increased for higher levels of amyloid. Further, SRTM-derived R1 changes correlated well with simulated CBF changes ( R2 > 0.95) and SUVr’s sensitivity to CBF changes improved for later uptake-times, with the exception of [18F]flutemetamol cortical changes. In conclusion, RLogan is the preferred method for amyloid quantification of [18F]flutemetamol and [18F]florbetaben studies and SRTM could be additionally used for obtaining a CBF proxy.


Author(s):  
Sandra Manninen ◽  
Tomi Karjalainen ◽  
Lauri J. Tuominen ◽  
Jarmo Hietala ◽  
Valtteri Kaasinen ◽  
...  

AbstractPositron emission tomography (PET) can be used for in vivo measurement of specific neuroreceptors and transporters using radioligands, while voxel-based morphometric analysis of magnetic resonance images allows automated estimation of local grey matter densities. However, it is not known how regional neuroreceptor or transporter densities are reflected in grey matter densities. Here, we analyzed brain scans retrospectively from 325 subjects and compared grey matter density estimates with three different neuroreceptors and transporter availabilities. µ-opioid receptors (MORs) were measured with [11C]carfentanil (162 scans), dopamine D2 receptors with [11C]raclopride (91 scans) and serotonin transporters (SERT) with [11C]MADAM (72 scans). The PET data were modelled with simplified reference tissue model. Voxel-wise correlations between binding potential and grey matter density images were computed. Regional binding of all the used radiotracers was associated with grey matter density in region and ligand-specific manner independently of subjects’ age or sex. These data show that grey matter density and MOR and D2R neuroreceptor / SERT availability are correlated, with effect sizes (r2) ranging from 0.04 to 0.69. This suggests that future studies comparing PET outcome measure different groups (such as patients and controls) should take grey matter density differences between the groups into account.


Sign in / Sign up

Export Citation Format

Share Document