decay tests
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 39)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 11 (23) ◽  
pp. 11270
Author(s):  
Lander Galera-Calero ◽  
Jesús María Blanco ◽  
Gregorio Iglesias

A detailed study is undertaken of the computational modelling of a sub-platform for floating offshore wind using the software Star-CCM+ with the application of the RANS approach. First, a mathematical introduction to the governing equations is carried out. Then, the computational grid is defined, and the grid-independence of the solution is verified. A time-dependent study is performed with the selected time-step. Finally, two examples of 3D decay tests in heave of the sub-platform without and with moorings are presented, accompanied by a damping factor study, with the aim of providing a better understanding of the hydrodynamic damping of the platform. Throughout the process, three degrees of freedom (DoFs) are locked due to the limitations imposed by the use of a symmetry plane; this implementation allowed us to reduce the computational cost of each simulation by 50%. Therefore, three DoFs (heave, surge and pitch) are considered. The coupling study, adding a mooring system in the decay tests and the regular wave tests, shows good agreement between the experimental and computational results. The first half-period of the simulations presents a greater discrepancy due to the fact that the damping of the platform is lower in the computational simulation. However, this does not imply that the hydrodynamic damping is underestimated but may be directly related to the lock of various DoFs associated with the hydrodynamic damping.


2021 ◽  
Author(s):  
Laust Tophøj ◽  
Nikolaj Grathwol

Mass dampers are widely used in engineering applications. We consider the effects of limitations on the damper amplitude. Using simple methods to analyze very general mass dampers, we find an upper limit to the damping. The maximum damping logarithmic decrement is δmax = 4μα, where μ is the mass ratio, and α isthe amplitude ratio of damper to structure amplitude. The result is further discussed in relation to Tuned Mass Dampers (TMDs), which can performvery well if there is enough avaliable space. In practice, amplitude limits always apply, and our result can be used to relate these to the damper performance.Our result also applies to active devices, which have to obey the limit mentioned above. Simulated tests of TMDs and other mass dampers are described. The damping is measured both by decay tests and by forced motion test. The methods agree well in the amplitude-limited regime. In other cases, decay tests are difficulet to interpret, indicating that one needs to be very careful whenmeasuring damping of 2DOF systems based solely on decay tests. We hope that our result may inform the selection and design of mass dampers in the future, where one should consider amplitude limits as the very first step.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012135
Author(s):  
F Mauro ◽  
R Nabergoj

Abstract The execution of the so-called extinction tests represents the classical experimental method used to estimate the damping of an oscillatory system. For the specific case of ship roll motion, the roll decay tests are carried out at model-scale in a hydrodynamic basin. During these tests, the vessel is posed in an imbalance condition by an external moment and, after the release, the motion decays to the equilibrium condition. When the damping is far below the critical one, the transient decay is oscillatory. Here a new methodology is presented to determine the damping coefficients by fitting the roll decay curves directly, using a least-square fitting through a differential evolution algorithm of global optimisation. The results obtained with this methodology are compared with the predictions from standard methods. This kind of approach seems to be very promising when the motion model of the system under investigation is established with any level of non-linearities included. The usage of the fitting procedure on the approximate analytic solution of the differential equation of motion demonstrates the flexibility of the method. As a benchmark example, two experimentally measured roll extinction curves have been considered and suitably fitted. The newly predicted results, compared with the ones obtained from standard roll decay analysis, show that the algorithm is capable to perform a good regression on the experimental data.


2021 ◽  
Author(s):  
Frederic Maurer ◽  
Jonas Kristiansen Nøland

The sudden short-circuit is considered the gold-standard parameter measurement method for wound-field synchronous machines (WFSMs) as it enables the recording of the characteristic quantities in near-to-real conditions. However, the test needs huge pieces of equipment, but even worse, it reduces the lifetime of the electrical components by up to 10 years due to the high winding overhang mechanical forces. The DC-Decay tests are low-power alternatives to obtain the characteristic quantities without damaging the machinery. To allow wider use of this method, there are a couple of challenges left that are tackled by this paper. The two main open challenges are, firstly, the number of measurements needed to reach a particular precision, and secondly, a comparison of the DC-Decay with the sudden short-circuit test to allow the validation against the gold standard. More detailed, this paper explores the main challenges associated with the practical use of the DC decay method, which is a non-conventional and detailed-level approach to characterize WFSMs. We provide replies and recommendations regarding the number of measurements, suggesting the minimum number of recorded tests needed to obtain the equivalent diagram with a given accuracy, which has been further validated with an experimental case study. Moreover, the potential enhancement and precision of the parameter identification algorithm are studied in detail. Finally, the equivalent parameters of the DC decay method are compared to the gold standard, which concludes on what the characterization means in terms of predicting accurate transient short-circuit currents for WFSMs.


2021 ◽  
Author(s):  
Frederic Maurer ◽  
Jonas Kristiansen Nøland

The sudden short-circuit is considered the gold-standard parameter measurement method for wound-field synchronous machines (WFSMs) as it enables the recording of the characteristic quantities in near-to-real conditions. However, the test needs huge pieces of equipment, but even worse, it reduces the lifetime of the electrical components by up to 10 years due to the high winding overhang mechanical forces. The DC-Decay tests are low-power alternatives to obtain the characteristic quantities without damaging the machinery. To allow wider use of this method, there are a couple of challenges left that are tackled by this paper. The two main open challenges are, firstly, the number of measurements needed to reach a particular precision, and secondly, a comparison of the DC-Decay with the sudden short-circuit test to allow the validation against the gold standard. More detailed, this paper explores the main challenges associated with the practical use of the DC decay method, which is a non-conventional and detailed-level approach to characterize WFSMs. We provide replies and recommendations regarding the number of measurements, suggesting the minimum number of recorded tests needed to obtain the equivalent diagram with a given accuracy, which has been further validated with an experimental case study. Moreover, the potential enhancement and precision of the parameter identification algorithm are studied in detail. Finally, the equivalent parameters of the DC decay method are compared to the gold standard, which concludes on what the characterization means in terms of predicting accurate transient short-circuit currents for WFSMs.


2021 ◽  
Vol 9 (9) ◽  
pp. 1030
Author(s):  
Sebastien Gueydon ◽  
Frances Judge ◽  
Eoin Lyden ◽  
Michael O’Shea ◽  
Florent Thiebaut ◽  
...  

This paper introduces metrics developed for analysing irregular wave test results from the round robin testing campaign carried out on a floating wind turbine as part of the EU H2020 MaRINET2 project. A 1/60th scale model of a 10 MW floating platform was tested in wave basins in four different locations around Europe. The tests carried out in each facility included decay tests, tests in regular and irregular waves with and without wind thrust, and tests to characterise the mooring system as well as the model itself. While response amplitude operations (RAOs) are a useful tool for assessing device performance in irregular waves, they are not easy to interpret when performing an inter-facility comparison where there are many variables. Metrics that use a single value per test condition rather than an RAO curve are a means of efficiently comparing tests from different basins in a more heuristic manner. In this research, the focus is on using metrics to assess how the platform responds with varying wave height and thrust across different facilities. It is found that the metrics implemented are very useful for extracting global trends across different basins and test conditions.


2021 ◽  
Vol 9 (9) ◽  
pp. 988 ◽  
Author(s):  
Sebastien Gueydon ◽  
Frances M. Judge ◽  
Michael O’Shea ◽  
Eoin Lyden ◽  
Marc Le Boulluec ◽  
...  

This paper documents the round robin testing campaign carried out on a floating wind turbine as part of the EU H2020 MaRINET2 project. A 1/60th scale model of a 10 MW floating platform was tested in wave basins in four different locations around Europe. The tests carried out in each facility included decay tests, tests in regular and irregular waves with and without wind thrust, and tests to characterise the mooring system as well as the model itself. For the tests in wind, only the thrust of the turbine was considered and it was fixed to pre-selected levels. Hence, this work focuses on the hydrodynamic responses of a semi-submersible floating foundation. It was found that the global surge stiffness was comparable across facilities, except in one case where different azimuth angles were used for the mooring lines. Heave and pitch had the same stiffness coefficient and periods for all basins. Response Amplitude Operators (RAOs) were used to compare the responses in waves from all facilities. The shape of the motion RAOs were globally similar for all basins except around some particular frequencies. As the results were non-linear around the resonance and cancellation frequencies, the differences between facilities were magnified at these frequencies. Surge motions were significantly impacted by reflections leading to large differences in these RAOs between all basins.


2021 ◽  
Vol 300 ◽  
pp. 124057
Author(s):  
J.M. Alducin-Ochoa ◽  
J.J. Martín-del-Río ◽  
M. Torres-González ◽  
V. Flores-Alés ◽  
D. Hernández-Cruz
Keyword(s):  

2021 ◽  
Author(s):  
Hyunchul Jang ◽  
Dae-Hyun Kim ◽  
Madhusuden Agrawal ◽  
Sebastien Loubeyre ◽  
Dongwhan Lee ◽  
...  

Abstract Platform Vortex Induced Motion (VIM) is an important cause of fatigue damage on risers and mooring lines connected to deep-draft semi-submersible floating platforms. The VIM design criteria have been typically obtained from towing tank model testing. Recently, computational fluid dynamics (CFD) analysis has been used to assess the VIM response and to augment the understanding of physical model test results. A joint industry effort has been conducted for developing and verifying a CFD modeling practice for the semi-submersible VIM through a working group of the Reproducible Offshore CFD JIP. The objectives of the working group are to write a CFD modeling practice document based on existing practices validated for model test data, and to verify the written practice by blind calculations with five CFD practitioners acting as verifiers. This paper presents the working group’s verification process, consisting of two stages. In the initial verification stage, the verifiers independently performed free-decay tests for 3-DOF motions (surge, sway, yaw) to check if the mechanical system in the CFD model is the same as in the benchmark test. Additionally, VIM simulations were conducted at two current headings with a reduced velocity within the lock-in range, where large sway motion responses are expected,. In the final verification stage, the verifiers performed a complete set of test cases with small revisions of their CFD models based on the results from the initial verification. The VIM responses from these blind calculations are presented, showing close agreement with the model test data.


2021 ◽  
Author(s):  
Arjen Koop ◽  
Pierre Crepier ◽  
Sebastien Loubeyre ◽  
Corentin Dobral ◽  
Kai Yu ◽  
...  

Abstract Estimates for roll damping are important input parameters for simulation studies on vessels operating at sea, e.g. FPSO mooring in waves, wind and current, workability and operability investigations, Dynamic Position studies, ship-to-ship operations and safety studies of vessels. To accurately predict the motions of vessels this quantity should be determined with confidence in the values. Traditionally, model experiments in water basins using so-called decay tests are carried out to determine the roll damping. With recent advancements in CFD modelling, the offshore industry has started using CFD as an alternative tool to compute the roll damping of FPSO’s. In order to help adopt CFD as a widely accepted tool, there is a need to develop confidence in CFD predictions. Therefore, a practical CFD modelling practice is developed within the Reproducible CFD JIP for roll decay CFD simulations. The Modelling Practice describes the geometry modelling, computational mesh, model set-up and post-processing for these type of CFD calculations. This modelling practice is verified and validated by three independent verifiers against available model test data. This paper provides an overview of the developed modelling practice and the calculated CFD results from the verifiers. The CFD modelling practice is benchmarked against available model test results for a tanker-shaped FPSO. By following this modelling practice, the CFD predictions for the equivalent linear damping coefficient and natural period of the roll motions are within 10% for all verifiers and within 10% from the model test results. Therefore, we conclude that when following the developed modelling practice for roll decay simulations, reliable, accurate and reproducible results can be obtained for the roll damping of tanker-shaped FPSOs.


Sign in / Sign up

Export Citation Format

Share Document