peptide profiles
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 24)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Colin A. Lee ◽  
Elena V. Romanova ◽  
Bruce R. Southey ◽  
Rhanor Gillette ◽  
Jonathan V. Sweedler

Despite substantial research on neuronal circuits in nudipleuran gastropods, few peptides have been implicated in nudipleuran behavior. In this study, we expanded the understanding of peptides in this clade, using three species with well-studied nervous systems, Hermissenda crassicornis, Melibe leonina, and Pleurobranchaea californica. For each species, we performed sequence homology analysis of de novo transcriptome predictions to identify homologs to 34 of 36 prohormones previously characterized in the gastropods Aplysia californica and Lymnaea stagnalis. We then used single-cell mass spectrometry to characterize peptide profiles in homologous feeding interneurons: the multifunctional ventral white cell (VWC) in P. californica and the small cardioactive peptide B large buccal (SLB) cells in H. crassicornis and M. leonina. The neurons produced overlapping, but not identical, peptide profiles. The H. crassicornis SLB cells expressed peptides from homologs to the FMRFamide (FMRFa), small cardioactive peptide (SCP), LFRFamide (LFRFa), and feeding circuit activating peptides prohormones. The M. leonina SLB cells expressed peptides from homologs to the FMRFa, SCP, LFRFa, and MIP-related peptides prohormones. The VWC, previously shown to express peptides from the FMRFa and QNFLa (a homolog of A. californica pedal peptide 4) prohormones, was shown to also contain SCP peptides. Thus, each neuron expressed peptides from the FMRFa and SCP families, the H. crassicornis and M. leonina SLB cells expressed peptides from the LFRFa family, and each neuron contained peptides from a prohormone not found in the others. These data suggest each neuron performs complex co-transmission, which potentially facilitates a multifunctional role in feeding. Additionally, the unique feeding characteristics of each species may relate, in part, to differences in the peptide profiles of these neurons. These data add chemical insight to enhance our understanding of the neuronal basis of behavior in nudipleurans and other gastropods.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tainá M. Marques ◽  
Anouke van Rumund ◽  
Iris Kersten ◽  
Ilona B. Bruinsma ◽  
Hans J.C.T. Wessels ◽  
...  

AbstractThe aim of our study was to investigate cerebrospinal fluid (CSF) tryptic peptide profiles as potential diagnostic biomarkers for the discrimination of parkinsonian disorders. CSF samples were collected from individuals with parkinsonism, who had an uncertain diagnosis at the time of inclusion and who were followed for up to 12 years in a longitudinal study. We performed shotgun proteomics to identify tryptic peptides in CSF of Parkinson’s disease (PD, n = 10), multiple system atrophy patients (MSA, n = 5) and non-neurological controls (n = 10). We validated tryptic peptides with differential levels between PD and MSA using a newly developed selected reaction monitoring (SRM) assay in CSF of PD (n = 46), atypical parkinsonism patients (AP; MSA, n = 17; Progressive supranuclear palsy; n = 8) and non-neurological controls (n = 39). We identified 191 tryptic peptides that differed significantly between PD and MSA, of which 34 met our criteria for SRM development. For 14/34 peptides we confirmed differences between PD and AP. These tryptic peptides discriminated PD from AP with moderate-to-high accuracy. Random forest modelling including tryptic peptides plus either clinical assessments or other CSF parameters (neurofilament light chain, phosphorylated tau protein) and age improved the discrimination of PD vs. AP. Our results show that the discovery of tryptic peptides by untargeted and subsequent validation by targeted proteomics is a suitable strategy to identify potential CSF biomarkers for PD versus AP. Furthermore, the tryptic peptides, and corresponding proteins, that we identified as differential biomarkers may increase our current knowledge about the disease-specific pathophysiological mechanisms of parkinsonism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eleni Petra ◽  
Tianlin He ◽  
Vasiliki Lygirou ◽  
Agnieszka Latosinska ◽  
Harald Mischak ◽  
...  

AbstractThe cardiorenal syndrome (CRS) is defined as the confluence of heart-kidney dysfunction. This study investigates the molecular differences at the level of the urinary peptidome between CRS patients and controls and their association to disease pathophysiology. The urinary peptidome of CRS patients (n = 353) was matched for age and sex with controls (n = 356) at a 1:1 ratio. Changes in the CRS peptidome versus controls were identified after applying the Mann–Whitney test, followed by correction for multiple testing. Proteasix tool was applied to investigate predicted proteases involved in CRS-associated peptide generation. Overall, 559 differentially excreted urinary peptides were associated with CRS patients. Of these, 193 peptides were specifically found in CRS when comparing with heart failure and chronic kidney disease urinary peptide profiles. Proteasix predicted 18 proteases involved in > 1% of proteolytic cleavage events including multiple forms of MMPs, proprotein convertases, cathepsins and kallikrein 4. Forty-four percent of the cleavage events were produced by 3 proteases including MMP13, MMP9 and MMP2. Pathway enrichment analysis supported that ECM-related pathways, fibrosis and inflammation were represented. Collectively, our study describes the changes in urinary peptides of CRS patients and potential proteases involved in their generation, laying the basis for further validation.


2021 ◽  
Vol 22 (11) ◽  
pp. 5940
Author(s):  
Fábio Trindade ◽  
António S. Barros ◽  
Jéssica Silva ◽  
Antonia Vlahou ◽  
Inês Falcão-Pires ◽  
...  

Native biofluid peptides offer important information about diseases, holding promise as biomarkers. Particularly, the non-invasive nature of urine sampling, and its high peptide concentration, make urine peptidomics a useful strategy to study the pathogenesis of renal conditions. Moreover, the high number of detectable peptides as well as their specificity set the ground for the expansion of urine peptidomics to the identification of surrogate biomarkers for extra-renal diseases. Peptidomics further allows the prediction of proteases (degradomics), frequently dysregulated in disease, providing a complimentary source of information on disease pathogenesis and biomarkers. Then, what does urine peptidomics tell us so far? In this paper, we appraise the value of urine peptidomics in biomarker research through a comprehensive analysis of all datasets available to date. We have mined > 50 papers, addressing > 30 different conditions, comprising > 4700 unique peptides. Bioinformatic tools were used to reanalyze peptide profiles aiming at identifying disease fingerprints, to uncover hidden disease-specific peptides physicochemical properties and to predict the most active proteases associated with their generation. The molecular patterns found in this study may be further validated in the future as disease biomarker not only for kidney diseases but also for extra-renal conditions, as a step forward towards the implementation of a paradigm of predictive, preventive and personalized (3P) medicine.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carolina S. Cerrudo ◽  
Susana Cavallero ◽  
Martín Rodríguez Fermepín ◽  
Germán E. González ◽  
Martín Donato ◽  
...  

The involvement of natriuretic peptides was studied during the hypertrophic remodeling transition mediated by sequential exposure to chronic hemodynamic overload. We induced hypertension in rats by pressure (renovascular) or volume overload (DOCA-salt) during 6 and 12 weeks of treatment. We also studied the consecutive combination of both models in inverse sequences: RV 6 weeks/DS 6 weeks and DS 6 weeks/RV 6 weeks. All treated groups developed hypertension. Cardiac hypertrophy and left ventricular ANP gene expression were more pronounced in single DS than in single RV groups. BNP gene expression was positively correlated with left ventricular hypertrophy only in RV groups, while ANP gene expression was positively correlated with left ventricular hypertrophy only in DS groups. Combined models exhibited intermediate values between those of single groups at 6 and 12 weeks. The latter stimulus associated to the second applied overload is less effective than the former to trigger cardiac hypertrophy and to increase ANP and BNP gene expression. In addition, we suggest a correlation of ANP synthesis with volume overload and of BNP synthesis with pressure overload-induced hypertrophy after a prolonged treatment. Volume and pressure overload may be two mechanisms, among others, involved in the differential regulation of ANP and BNP gene expression in hypertrophied left ventricles. Plasma ANP levels reflect a response to plasma volume increase and volume overload, while circulating BNP levels seem to be regulated by cardiac BNP synthesis and ventricular hypertrophy.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 559
Author(s):  
Tipparat Thiangtrongjit ◽  
Nattapon Simanon ◽  
Poom Adisakwattana ◽  
Yanin Limpanont ◽  
Phiraphol Chusongsang ◽  
...  

Schistosoma mekongi is found in the lower Mekong river region and causes schistosomiasis. Low sensitivity of diagnosis and development of drug resistance are problems to eliminate this disease. To develop novel therapies and diagnostics for S. mekongi, the basic molecular biology of this pathogen needs to be explored. Bioactive peptides have been reported in several worms and play important roles in biological functions. Limited information is available on the S. mekongi peptidome. Therefore, this study aimed to identify S. mekongi peptides using in silico transcriptome mining and mass spectrometry approaches. Schistosoma peptide components were identified in adult worms, eggs, and infected mouse sera. Thirteen neuropeptide families were identified using in silico predictions from in-house transcriptomic databases of adult S. mekongi worms. Using mass spectrometry approaches, 118 peptides (from 54 precursor proteins) and 194 peptides (from 86 precursor proteins) were identified from adult worms and eggs, respectively. Importantly, eight unique peptides of the S. mekongi ubiquitin thioesterase, trabid, were identified in infected mouse sera 14, 28, and 56 days after infection. This protein may be a potential target for diagnosis of schistosomiasis. The S. mekongi peptide profiles determined in this study could be used for further drug and diagnostic development.


Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 249
Author(s):  
Joanna Matysiak ◽  
Eliza Matuszewska ◽  
Marek L. Kowalski ◽  
Sławomir W. Kosiński ◽  
Ewa Smorawska-Sabanty ◽  
...  

Venom immunotherapy (VIT) is administered to allergic patients to reduce the risk of dangerous systemic reactions following an insect sting. To better understand the mechanism of this treatment and its impact on the human organism, we analysed serum proteomic patterns obtained at five time-points from Hymenoptera-venom-allergic patients undergoing VIT. For statistical analyses, patients were additionally divided into two groups (high responders and low responders) according to serum sIgG4 levels. VIT was found to be associated with changes in seven proteins: the fibrinogen alpha chain, complement C4-A, complement C3, filamin-B, kininogen-1, myosin-9 and inter-alpha-trypsin inhibitor heavy chain H1. The number of discriminative m/z (mass-to-charge ratio) features increased up to the 90th day of VIT, which may be associated with the development of immunity after the administration of increased venom doses. It may also suggest that during VIT, there may occur processes involved not only in protein synthesis but also in protein degradation (caused by proteolytic venom components). The results are consistent with measured serum sIgG4 levels, which increased from 2.04 mgA/I at baseline to 7.25 mgA/I at 90 days. Moreover, the major proteomic changes were detected separately in the high responder group. This may suggest that changes in protein–peptide profiles reflect the actual response to VIT.


2021 ◽  
Vol 8 ◽  
Author(s):  
Juliana A. S. Leite ◽  
Carlos A. Montoya ◽  
Simon M. Loveday ◽  
Evelyne Maes ◽  
Jane A. Mullaney ◽  
...  

Proteases present in milk are heat-sensitive, and their activities increase or decrease depending on the intensity of the thermal treatment applied. The thermal effects on the protease activity are well-known for bovine milk but poorly understood for ovine and caprine milk. This study aimed to determine the non-specific and specific protease activities in casein and whey fractions isolated from raw bovine, ovine, and caprine milk collected in early lactation, and to determine the effects of low-temperature, long-time (63°C for 30 min) and high-temperature, short-time (85°C for 5 min) treatments on protease activities within each milk fraction. The non-specific protease activities in raw and heat-treated milk samples were determined using the substrate azocasein. Plasmin (the main protease in milk) and plasminogen-derived activities were determined using the chromogenic substrate S-2251 (D-Val-Leu-Lys-pNA dihydrochloride). Peptides were characterized using high-resolution liquid chromatography coupled with tandem mass spectrometry. The activity of all native proteases, shown as non-specific proteases, was similar between raw bovine and caprine milk samples, but lower (P < 0.05) than raw ovine milk in the whey fraction. There was no difference (P > 0.05) between the non-specific protease activity of the casein fraction of raw bovine and caprine milk samples; both had higher activity than ovine milk. After 63°C/30 min, the non-specific protease activity decreased (44%; P > 0.05) for the bovine casein fraction only. In contrast, the protease activity of the milk heated at 85°C/5 min changed depending on the species and fraction. For instance, the activity decreased by 49% for ovine whey fraction, but it increased by 68% for ovine casein fraction. Plasmin and plasminogen were in general inactivated (P > 0.05) when all milk fractions were heated at 85°C/5 min. Most of the peptides present in heat-treated milk were derived from β-casein and αS1-casein, and they matched the hydrolysis profile of cathepsin D and plasmin. Identified peptides in ruminant milk samples had purported immunomodulatory and inhibitory functions. These findings indicate that the non-specific protease activity in whey and casein fractions differed between ruminant milk species, and specific thermal treatments could be used to retain better protease activity for all ruminant milk species.


2021 ◽  
Vol 22 (5) ◽  
pp. 2377
Author(s):  
Robert L. Beverly ◽  
Prajna Woonnimani ◽  
Brian P. Scottoline ◽  
Jiraporn Lueangsakulthai ◽  
David C. Dallas

For bioactive milk peptides to be relevant to infant health, they must be released by gastrointestinal proteolysis and resist further proteolysis until they reach their site of activity. The intestinal tract is the likeliest site for most bioactivities, but it is currently unknown whether bioactive milk peptides are present therein. The purpose of the present study was to identify antimicrobial and bifidogenic peptides in the infant intestinal tract. Milk peptides were extracted from infant intestinal samples, and the activities of the bulk peptide extracts were determined by measuring growth of Escherichia coli, Staphylococcus aureus, and Bifidobacterium longum spp. infantis after incubation with serial dilutions. The peptide profiles of active and inactive samples were determined by peptidomics analysis and compared to identify candidate peptides for bioactivity testing. We extracted peptides from 29 intestinal samples collected from 16 infants. Five samples had antimicrobial activity against S. aureus and six samples had bifidogenic activity for B. infantis. We narrowed down a list of 6645 milk peptides to 11 candidate peptides for synthesis, of which 6 fully inhibited E. coli and S. aureus growth at concentrations of 2500 and 3000 µg/mL. This study provides evidence for the potential bioactivity of milk peptides in the infant intestinal tract.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 425
Author(s):  
Sweeny Chauhan ◽  
Sean O’Callaghan ◽  
Audrey Wall ◽  
Tomasz Pawlak ◽  
Ben Doyle ◽  
...  

Bioactive peptides are known to have many health benefits beyond nutrition; yet the peptide profile of high protein ingredients has been largely overlooked when considering the effects of different processing techniques. Therefore, to investigate whether drying conditions could affect the peptide profile and bioactivity within a functional ingredient, we examined the effects of spray (SD) and freeze (FD) drying on rice natural peptide network (NPN), a characterised functional ingredient sourced from the Oryza sativa proteome, which has previously been shown to effectively modulate circulating cytokines and improve physical performance in humans. In the manufacturing process, rice NPN was either FD or SD. Employing a peptidomic approach, we investigated the physicochemical characteristics of peptides common and unique to FD and SD preparations. We observed similar peptide profiles regarding peptide count, amino acid distribution, weight, charge, and hydrophobicity in each sample. Additionally, to evaluate the effects of drying processes on functionality, using machine learning, we examined constituent peptides with predicted anti-inflammatory activity within both groups and identified that the majority of anti-inflammatory peptides were common to both. Of note, key bioactive peptides validated within rice NPN were recorded in both SD and FD samples. The present study provides an important insight into the overall stability of the peptide profile and the use of machine learning in assessing predicted retention of bioactive peptides contributing to functionality during different types of processing.


Sign in / Sign up

Export Citation Format

Share Document