hemicontractive mappings
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Hafiz Fukhar-ud-Din ◽  
Safeer Hussain Khan

In this paper, we obtain strong convergence results for asymptotically demicontractive and asymptotically hemicontractive mappings in hyperbolic spaces. We present our results in hyperbolic spaces. This class of spaces contains both linear and nonlinear spaces like CAT(0) spaces, [Formula: see text]-trees, Banach spaces and Hilbert spaces. Thus our results are not only novel but also much more general.


2020 ◽  
Vol 26 (2) ◽  
pp. 221-229
Author(s):  
Godwin C. Ugwunnadi ◽  
Chinedu Izuchukwu ◽  
Oluwatosin T. Mewomo

AbstractIn this paper, we introduce and study an Ishikawa-type iteration process for the class of generalized hemicontractive mappings in 𝑝-uniformly convex metric spaces, and prove both Δ-convergence and strong convergence theorems for approximating a fixed point of generalized hemicontractive mapping in complete 𝑝-uniformly convex metric spaces. We give a surprising example of this class of mapping that is not a hemicontractive mapping. Our results complement, extend and generalize numerous other recent results in CAT(0) spaces.


Author(s):  
Micah Okwuchukwu Osilike ◽  
Anthony Chibuike Onah

Abstract A new class of α-hemicontractive maps T for which the strong convergence of the Ishikawa iteration algorithm to a fixed point of T is assured is introduced and studied. The study is a continuation of a recent study of a new class of α-demicontractive mappings T by L. Mărușter and Ș. Mărușter, Mathematical and Computer Modeling 54 (2011) 2486-2492 in which they proved strong convergence of the Mann iteration scheme to a fixed point of T. Our class of α-hemicontractive maps is more general than the class of α-demicontractive maps. No compactness assumption is imposed on the operator or it’s domain, and no additional requirement is imposed on the set of fixed points.


Sign in / Sign up

Export Citation Format

Share Document