cable dome
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2136
Author(s):  
Mingmin Ding ◽  
Yuzhou Shen ◽  
Yang Wei ◽  
Bin Luo ◽  
Lulu Wang ◽  
...  

A steel-batten ribbed cable dome structural system is proposed. By replacing the upper flexible cables with semi-rigid steel battens, rigid roofing materials were conveniently installed overhead via non-bracket or less-bracket technology. Additionally, an 8 m diameter test model was designed, and a ‘ω’ shaped less-bracket consequent hoist-dragging system was adopted. Finally, the test model was tested under symmetric and asymmetric uniform loading arrangements, while a finite element model was established to verify the test values. The results indicate that the measured values are basically consistent with the finite element values. In the early steps of hoisting and dragging, the structure establishes a prestress, accumulates stiffness, and found its internal force balance, while the entire structure keeps a “ω” shape to guarantee stability. As the internal forces of the components increase, the structure turns from “ω” to “m” and finally reached its designed shape. With increasing symmetric uniform load, the internal forces of the cables decrease, the bending stresses of the steel battens increase, and the steel battens remain in the elastic stage. Under an asymmetric uniform load, the high loaded area is displaced downward, and the low loaded area behaves upward, twisting the overall structure.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5158
Author(s):  
Wenfeng Du ◽  
Hui Wang ◽  
Liming Zhu ◽  
Yannan Zhao ◽  
Yingqi Wang ◽  
...  

Aiming at the problems of a low material utilization rate and uneven stress distribution of cast-steel support joints in cable dome structures, topology optimization and additive manufacturing methods are used for optimization design and integrated manufacturing. First, the basic principle and calculation process of topology optimization are briefly introduced. Then, the initial model of the support joint is calculated and analyzed by using the universal software ANSYS Workbench 2020R2 and Altair OptiStruct, and the optimized joint is imported into Discovery Live to smooth the surface. The static behaviors of three types of joints (topology-optimized joints, joints after the smoothing treatment, and joints from practical engineering) are compared and analyzed. Finally, the joints are printed by using fused deposition modeling (FDM) technology and laser-based powder bed fusion (LBPBF) technology in additive manufacturing. The results show that the new support joint in the cable dome structure obtained by the topology optimization method has the advantages of a novel shape, a high material utilization rate, and a uniform stress distribution. Additive manufacturing technology can allow the manufacture of complex shape components with high precision and high speed. The combination of topology optimization and additive manufacturing effectively realizes the advanced design and integrated manufacturing of support joints for cable dome structures.


Author(s):  
G.P. Kolomiychuk ◽  
◽  
V.G. Kolomiichuk ◽  
V.G. Kolomiichuk ◽  
◽  
...  

To create fundamentally new innovative large-span structures of buildings and structures coverings, modern design solutions of prestressed cable domes of the Tensegrity type are considered. The service life of the first built Tensigrity domes is only 35 years. These are fairly new, effective structures that require careful study and use of modern scientific approaches for their design using software systems, since their work under load and the construction process are quite complex. The design analysis and erection of self-stressed structures is based on the invention of an equilibrium structure, the so-called tensegrity form. The search for the shape is multidimensional and consists of the stage of computational analysis of a self-stressed dome for the equilibrium position of elements and their nodes, selection of the most stable and rigid structure, as well as taking into account possible unfavorable loads during operation and the initial load in the elements from the application of prestressing. To determine the shape of cable domes, a nonlinear programming problem with given axial forces is formulated, which can be considered as the problem of minimizing the difference in the total strain energy between the elements of the cables and struts under constraints on the compatibility conditions. The first step in calculating the prestressing of a cable dome is to assess the feasibility of its geometry. The possibility of forming a cable dome of negative Gaussian curvature is considered and a method for calculating the prestressing for this new shape is investigated. The proposed method is effective and accurate in determining the allowable prestressing for a cable dome with negative Gaussian curvature and can be used for other types of prestressed structures. The new directions for the development of effective constructive solutions for large-span coatings are presented, including a suspended-dome structure, which combines the advantages of a mesh shell and a cable dome. Special attention should be paid to experimental studies on models of tensegrity domes, the results of which demonstrate the positive and negative aspects of the behavior of structures under load, the process of their erection, as well as the possibility of control and restoration during operation.


Structures ◽  
2021 ◽  
Vol 31 ◽  
pp. 159-171
Author(s):  
Ming-min Ding ◽  
Bin Luo ◽  
Dong-zhi Guan ◽  
Yang Wei ◽  
Shu-yao Ding ◽  
...  

Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 110
Author(s):  
Mingmin Ding ◽  
Bin Luo ◽  
Shuyao Ding ◽  
Yuzhou Shen ◽  
Lifan Huang

According to existing rigid roofing projects, a new structure called the Levy hinged-beam cable dome is proposed. By replacing the upper flexible cables with hinged beams, rigid plates can be installed overhead. To fulfill the requirements of integral tow-lifting construction, the setting criteria for the temporary hinged joints on ridge beams were presented. An 8-m diameter specimen was manufactured and monitored to investigate the structural configurations during the accumulative traction-hoisting construction process. Finally, the specimen was tested under full-span and half-span loading conditions, while a numerical model was built to verify the experimental values. The results show that in the early stages of traction-hoisting, the structure establishes the overall prestress and finds its internal force balance, while the entire structure is in a shape of “ω”. As the component’s internal force increases during the construction steps, and the local deformations of the hinged beams gradually decrease, with the entire structure changing from “ω” to “m”, and finally reach their designed states. Under full-span loads, large local deformations occurred at the HB-3 hinges, while the bending stresses of these hinged beams were relatively small. Under half-span loads, the loading part exhibits a downward appearance, while the unloading part exhibits upward deflection.


2019 ◽  
Vol 23 (7) ◽  
pp. 1259-1275
Author(s):  
Rasoul Asghari ◽  
Karim Abedi ◽  
Mohammad Reza Chenaghlou

Cable domes obtain their stability through the boundary compression ring that contradicts the free-standing principle of tensegrities. Replacement of that with a tensegrity ring has recently attracted the attention of researchers. In this study, form-finding of a modified hybrid structure consisting of a tensegrity ring and a Levy cable dome has been presented. Two groups of different configurations with two different arrangements of modules in tensegrity ring and also two connecting methods between the ring and cable dome parts were considered in the hybrid structures. Since the distribution of pre-stress forces is a fundamental issue in structural behavior, the proximity of pre-stress force values between two parts of ring and cable dome was chosen as comparison criterion. The form-finding of a variety of hybrid cases was carried out and results were compared with the previously proposed hybrid structure and with each other to achieve the best combination method between two parts. It was found that the hybrid cases proposed in this study have a very better pre-stress force distribution and finally the best hybrid structure also was presented.


2019 ◽  
Vol 153 ◽  
pp. 519-532 ◽  
Author(s):  
Xiangyu Yan ◽  
Yan Yang ◽  
Zhihua Chen ◽  
Qing Ma

2018 ◽  
Vol 19 (9) ◽  
pp. 704-718 ◽  
Author(s):  
Xiao-tian Liang ◽  
Xing-fei Yuan ◽  
Shi-lin Dong
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document