equivalent continuum model
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 1)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jinhong Lin ◽  
Yongsheng Zhu ◽  
Jing Hou ◽  
Bing Pan ◽  
Weijiang Chu ◽  
...  

A 3D equivalent continuum coupling analysis of the slope of the Zhouning pumped storage power station was proposed in this study. Firstly, the hydraulic properties of rock mass, groundwater, and deformation mechanism under high-frequency fluctuations of the water level are analyzed. Secondly, the three-dimensional Digital Terrain Model (DTM) with surface image information was established by digital photogrammetry technology for cataloging field fracture information. Third, stress-seepage coupling simulation using a hybrid grid approach and the FLAC3D equivalent continuum model was implemented. The results show that the permeability of rock mass is stress-dependent and anisotropic, and the direction of maximum principal permeability of both bank slopes is approximately parallel to the river. Slope deformations induced by impoundment during the operation period are the superposition results of two mechanisms, referred to as “mattress effect” and “swelling effect.” Attention should be paid to the tensile strength of the rock mass during operation.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3173
Author(s):  
Ji-Won Kim ◽  
Song-Hun Chong ◽  
Gye-Chun Cho

The presence of gouge in rock joints significantly affects the physical and mechanical properties of the host rock mass. Wave-based exploration techniques have been widely used to investigate the effects of gouge fill on rock mass properties. Previous research on wave propagation in gouge-filled joints focused on analytical and theoretical methods. The lack of experimental methods for multiple rock joint systems, however, has limited the verification potential of the proposed models. In this study, the effects of gouge material and thickness on wave propagation in equivalent continuum jointed rocks are investigated using a quasi-static resonant column test. Gouge-filled rock specimens are simulated using stacked granite rock discs. Sand and clay gouge fills of 2 and 5 mm thicknesses are tested to investigate the effects of gouge material and thickness. Comprehensive analyses of the effects of gouge thickness are conducted using homogeneous isotropic acetal gouge fills of known thickness. The results show that gouge fill leads to changes in wave velocity, which depend on the characteristics of the gouge fill. The results also show that particulate soil gouge is susceptible to preloading effects that cause permanent changes in the soil fabric and contact geometry and that increased gouge thickness causes a more significant stiffness contribution of the gouge material properties to the overall stiffness of the equivalent continuum specimen. The normal and shear joint stiffnesses for different gouge fill conditions are calculated from the experimental results using the equivalent continuum model and suggested as input parameters for numerical analysis.


Author(s):  
Karthik Yerrapragada ◽  
Armaghan Salehian

This paper presents an equivalent continuum model to study the bending-torsion-axial coupled vibrations of a cable-harnessed beam. The pre-tensioned cable is wrapped periodically around the beam in a diagonal manner. The host structure is assumed to behave as a Euler-Bernoulli beam. The system is modeled using energy methods. The diagonal wrapping pattern results in variable coefficient strain and kinetic energies. Homogenization technique is used to convert spatially varying coefficients into a constant coefficient one. Coupled partial differential equations representing the bending, torsion and the axial modes are derived using Hamilton’s principle. The free vibration characteristics such as the natural frequencies and the mode shapes of the coupled system are analyzed for a fixed-fixed boundary condition and compared to results from the uncoupled and finite element analysis models.


Sign in / Sign up

Export Citation Format

Share Document