occluded objects
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 53)

H-INDEX

33
(FIVE YEARS 4)

Author(s):  
Can Cuhadar ◽  
Hoi Nok Tsao

A prominent problem in computer vision is occlusion, which occurs when an object’s key features temporarily disappear behind another crossing body, causing the computer to struggle with image detection. While the human brain is capable of compensating for the invisible parts of the blocked object, computers lack such scene interpretation skills. Cloud computing using convolutional neural networks is typically the method of choice for handling such a scenario. However, for mobile applications where energy consumption and computational costs are critical, cloud computing should be minimized. In this regard, we propose a computer vision sensor capable of efficiently detecting and tracking covered objects without heavy reliance on occlusion handling software. Our edge-computing sensor accomplishes this task by self-learning the object prior to the moment of occlusion and uses this information to “reconstruct” the blocked invisible features. Furthermore, the sensor is capable of tracking a moving object by predicting the path it will most likely take while travelling out of sight behind an obstructing body. Finally, sensor operation is demonstrated by exposing the device to various simulated occlusion events. Keywords:  Computer vision, occlusion handling, edge computing, object tracking, dye sensitized solar cell. Corresponding author Email: [email protected] 


2022 ◽  
Vol 72 (1) ◽  
pp. 83-90
Author(s):  
Himanshu Singh ◽  
Millie Pant ◽  
Sudhir Khare

Motion estimation, object detection, and tracking have been actively pursued by researchers in the field of real time video processing. In the present work, a new algorithm is proposed to automatically detect objects using revised local binary pattern (m-LBP) for object detection. The detected object was tracked and its location estimated using the Kalman filter, whose state covariance matrix was tuned using particle swarm optimisation (PSO). PSO, being a nature inspired algorithm, is a well proven optimization technique. This algorithm was applied to important real-world problems of partially-occluded objects in infrared videos. Algorithm validation was performed by realizing a thermal imager, and this novel algorithm was implemented in it to demonstrate that the proposed algorithm is more efficient and produces better results in motion estimation for partially-occluded objects. It is also shown that track convergence is 56% faster in the PSO-Kalman algorithm than tracking with Kalman-only filter.


2021 ◽  
Vol 11 (24) ◽  
pp. 11630
Author(s):  
Yan Zhou ◽  
Sijie Wen ◽  
Dongli Wang ◽  
Jinzhen Mu ◽  
Irampaye Richard

Object detection is one of the key algorithms in automatic driving systems. Aiming at addressing the problem of false detection and the missed detection of both small and occluded objects in automatic driving scenarios, an improved Faster-RCNN object detection algorithm is proposed. First, deformable convolution and a spatial attention mechanism are used to improve the ResNet-50 backbone network to enhance the feature extraction of small objects; then, an improved feature pyramid structure is introduced to reduce the loss of features in the fusion process. Three cascade detectors are introduced to solve the problem of IOU (Intersection-Over-Union) threshold mismatch, and side-aware boundary localization is applied for frame regression. Finally, Soft-NMS (Soft Non-maximum Suppression) is used to remove bounding boxes to obtain the best results. The experimental results show that the improved Faster-RCNN can better detect small objects and occluded objects, and its accuracy is 7.7% and 4.1% respectively higher than that of the baseline in the eight categories selected from the COCO2017 and BDD100k data sets.


2021 ◽  
Vol 150 (4) ◽  
pp. A165-A165
Author(s):  
Kathryne Allen ◽  
Miao Fu ◽  
Christopher Farid ◽  
Cynthia F. Moss
Keyword(s):  

2021 ◽  
Vol 21 (9) ◽  
pp. 2291
Author(s):  
Thomas Cherian ◽  
SP Arun
Keyword(s):  

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2319
Author(s):  
Han Wu ◽  
Chenjie Du ◽  
Zhongping Ji ◽  
Mingyu Gao ◽  
Zhiwei He

Multi-object tracking (MOT) is a significant and widespread research field in image processing and computer vision. The goal of the MOT task consists in predicting the complete tracklets of multiple objects in a video sequence. There are usually many challenges that degrade the performance of the algorithm in the tracking process, such as occlusion and similar objects. However, the existing MOT algorithms based on the tracking-by-detection paradigm struggle to accurately predict the location of the objects that they fail to track in complex scenes, leading to tracking performance decay, such as an increase in the number of ID switches and tracking drifts. To tackle those difficulties, in this study, we design a motion prediction strategy for predicting the location of occluded objects. Since the occluded objects may be legible in earlier frames, we utilize the speed and location of the objects in the past frames to predict the possible location of the occluded objects. In addition, to improve the tracking speed and further enhance the tracking robustness, we utilize efficient YOLOv4-tiny to produce the detections in the proposed algorithm. By using YOLOv4-tiny, the tracking speed of our proposed method improved significantly. The experimental results on two widely used public datasets show that our proposed approach has obvious advantages in tracking accuracy and speed compared with other comparison algorithms. Compared to the Deep SORT baseline, our proposed method has a significant improvement in tracking performance.


Author(s):  
Soumya Chakravarty ◽  
Smriti Rani ◽  
Arijit Chowdhury ◽  
Tapas Chakravarty ◽  
Arpan Pal

Sign in / Sign up

Export Citation Format

Share Document