factsage software
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 13)

H-INDEX

5
(FIVE YEARS 1)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 593
Author(s):  
Fiseha Tesfaye ◽  
Daniel Lindberg ◽  
Dmitry Sukhomlinov ◽  
Pekka Taskinen ◽  
Leena Hupa

Thermal stabilities of selected ternary phases of industrial interest in the Ag-Cu-S system have been studied by the calorimetric and electromotive force techniques. The ternary compounds Ag1.2Cu0.8S (mineral mackinstryite) and AgCuS (mineral stromeyerite) were equilibrated through high-temperature reaction of the pure Cu2S and Ag2S in an inert atmosphere. The synthesized single solid sample constituting the two ternary phases was ground into fine powders and lightly pressed into pellets before calorimetric measurements. An electrochemical cell incorporating the two equilibrated phase and additional CuS as a cathode material was employed. The measurement results obtained with both techniques were analyzed and thermodynamic properties in the system have been determined and compared with the available literature values. Enthalpy of fusion data of the Ag-richer solid solution (Ag,Cu)2S have also been determined directly from the experimental data for the first time. The thermodynamic quantities determined in this work can be used to calculate thermal energy of processes involving the Ag-Cu-S-ternary phases. By applying the obtained results and the critically evaluated literature data, we have developed a thermodynamic database. The self-developed database was combined with the latest pure substances database of the FactSage software package to model the phase diagram of the Ag2S-Cu2S system.


2021 ◽  
Vol 2108 (1) ◽  
pp. 012097
Author(s):  
Zhihai Cheng ◽  
Jiahao Wang ◽  
Xinhai Han

Abstract Zhundong coal has been widely concerned because of its high alkali metal content, which brings great danger to the combustion of boiler. Therefore, it is extremely necessary to study the laws and characteristics of alkali metal influencing combustion in the burning process of zhundong coal. A gas-solid two-phase flow combustion model of pulverized coal containing NaCl was established by using Fluent software and FactSage software in a hot experimental combustion furnace. The influence of different NaCl content in pulverized coal on pulverized coal combustion process was discussed. The results show that with the increase of NaCl content in pulverized coal from 0 to 1% and 2%, the flame center temperature in the furnace increases about 80°C and 120°C under the same coal content, so it can be concluded that the increase of NaCl content can promote the combustion process of pulverized coal in the furnace. At the same time, it can be calculated that, with the increase of NaCl content, the flame range of the combustion region inside the furnace increases by 1/3. Because NaCl is decomposed by heat during combustion to help combustion, and the radiation heat transfer increases, the flame radiation range inside the furnace will increase.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6047
Author(s):  
Dong Hou ◽  
Peng Pan ◽  
Deyong Wang ◽  
Shaoyan Hu ◽  
Huihua Wang ◽  
...  

During the process of electroslag remelting (ESR) of steel containing titanium and aluminum, the activity ratio between titania and alumina in CaF2-CaO-MgO-Al2O3-TiO2 slag must be fixed in order to guarantee the titanium and aluminum contents in the ESR ingots. Under the condition of fixed activity ratio between titania and alumina in the slag, the melting temperature of slag should be investigated to improve the surface quality of ESR ingots. Therefore, this paper focuses on finding a kind of slag with low melting temperature that can be used for producing steel containing titanium. In the current study, the thermodynamic equilibrium of 3[Ti] + 2(Al2O3) = 4[Al] + 3(TiO2) between SUS321 steel and the two slag systems (CaF2:MgO:CaO:Al2O3:TiO2 = 46:4:25:(25 − x):x and CaF2:MgO:CaO:Al2O3:TiO2 = 46:4:(25 − 0.5 x):(25 − 0.5 x):x) are studied in an electrical resistance furnace based on Factsage software. After obtaining the equilibrium slag with fixed activity ratio between titania and alumina, the melting temperatures of the two slag systems are studied using slag melting experimental measurements and phase diagrams. The results show that the slag systems CaF2:MgO:CaO:Al2O3:TiO2 = 46:4:25:(25 − x):x, which consists of pre-melted slag S0 (CaF2:MgO:CaO:Al2O3 = 46:4:25:25) and pre-melted slag F1 (CaF2:MgO:CaO:TiO2 = 46:4:25:25), can not only control the aluminum and titanium contents in steel, but also have the desired low melting temperature property.


2021 ◽  
Vol 3 (1) ◽  
pp. 13
Author(s):  
Mustafa Seyrek ◽  
Richard Thackray

In this study, the viscosity of CaO-Al2O3 based mould fluxes with the addition of B2O3 and the effects of increasing the lime/alumina ratio have been observed through IPT (Inclined Plate Test). Additionally, FactSage software, Riboud and Urbain models were used to calculate the viscosity of the mould fluxes. The experimental results show that the viscosity of the mould fluxes decreases dramatically with a change in the lime/alumina ratio from 1 to 1.5. They also show that with an increase in the lime/alumina ratio ranging from 1.5 to 2.5, the viscosity slightly decreases, then when the lime/alumina ratio is over 2.5, the viscosity becomes stable. However, the addition of B2O3 decreases the viscosity of the mould fluxes at a lime/alumina ratio of 1.2, 3.3 and 5.5.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 249
Author(s):  
Yu-En Chang ◽  
Chi-Ming Lin ◽  
Jyun-Ming Shen ◽  
Wei-Ti Chang ◽  
Weite Wu

The CaO-SiO2-MgO-5Al2O3-30FeO five (oxide) components slag system was studied by varying the magnesium oxide (MgO) content (5.7–13.6 wt.%.% MgO) and keeping the basicity constant). The data were analyzed using the FactSage software. It was observed that the liquid network structure and precipitation of solid particles had an impact on high-temperature viscosity and foaming life. Under the same basicity (mass ratio CaO/SiO2 = 1.5) and at a temperature of 1500 °C, the MgO content was varied as 5.7 wt.%, 7.4 wt.%, 9.6 wt.%, 11.5 wt.%, and 13.6 wt.% in A0~A5. The solid fractions of different samples were estimated with FactSage software and found to be A0–A2 (0 wt.%), A3 (2.77 wt.%), A4 (6.92 wt.%), A5 (11.7 wt.%). The viscosities of A0–A5 measured at 1500 ·C were 22, 47, 40, 76, 363, and 1088 mPa×s, respectively, and the foaming life was 2.0 min, 7.7 min, 6.2 min, 13.4 min, 16.8 min, and 18.0 min, respectively. It was found that A5 exhibits the best effective foaming life under these environmental conditions because it can ex-hibit a double foaming effect formed by the precipitation of solid particles. The Si-O-Si network in liquid slag also contributed to foaming life, when there was only liquid slag bonding in the slag, the effective foaming life was 7.7 min. In the absence of these factors, the foaming life was only 2 min.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1696
Author(s):  
Yi Wang ◽  
Changrong Li ◽  
Linzhu Wang ◽  
Xingqiang Xiong ◽  
Lu Chen ◽  
...  

The aluminum oxide inclusions in SWRS82B steel seriously affect the drawing performance of the steel strand. In this study, the influence of different additions of cerium (within the range of 0–0.034%) on the composition, morphology, size, number, and distribution of alumina inclusions was studied by scanning electron microscope and energy spectrum analyzer. The evolution of the composition of inclusions with different cerium additions was calculated based on classical thermodynamics and Factsage software calculation. The thermodynamic calculated results were consistent with the experimental results. It indicates that the modification route of Al2O3 inclusions in SWRS82B steel by increased cerium additions is as follows: Al2O3 → Ce2S3 + CeAlO3 + Ce2O2S + Al2O3 → Ce2S3 + CeAlO3 + Ce2O2S/Ce2S3 + Ce2O2S → Ce2S3 + Ce2O2S. Besides, when the amount of cerium is in the range of 0.023% to 0.030%, CeAlO3 inclusions gradually disappear. The best characteristics of inclusions in this study were obtained in experimental samples with cerium addition of 0.023%, in which the minimum size of inclusions is in the range of 3.52–4.84 μm and mostly uniform distribution. Finally, the mechanism on the modification by cerium was discussed based on the composition evolution of inclusion during solidification with Factsage calculation and experimental results. The compositions of inclusions were also analyzed based on the inclusion evolution model.


2020 ◽  
Vol 72 (3) ◽  
pp. 2-16
Author(s):  
Lech Bulkowski ◽  
Urszula Galisz ◽  
Krzysztof Radwanski

The paper presents the course and results of research into the production of cathodes for sputtering bactericidal coatings on glass surfaces in an industrial magnetron line at D.A. Glass. The study included the development of an innovative and comprehensive technology for producing various types of cathodes using a vacuum induction furnace. FactSage software was used for numerical simulations of phase transformations in the liquid and solid phase during the cooling and solidification of alloys, and the liquidus and solidus temperatures were determined using the thermal analysis method (DTA). The cathodes were made by casting plates that are components of ready-made cathodes. Zonal macrosegregation tests were carried out in the plate casting, which showed that the cast plates were characterised by high homogeneity in the entire volume. The chemical compositions of the cathodes corresponded to the required compositions, and their quality met the requirements for installation in a magnetron, which proves the correctness of the developed technologies of their production. The layers on the glass, sputtered in a magnetron device, were subjected to microbiological tests to determine the bactericidal (biocidal) properties of the glass. Preliminary results of these studies showed that the cathodes based on brass and bronze of the following type exhibited the best bactericidal properties: Cu90Sn10, Cu90Zn10, Cu80Zn10Al10, Cu80Ti20 and Cu65Ni18Zn17. The layers produced on the glass with the use of these cathodes exhibited the ability to deactivate the tested strains of microorganisms, including the elimination of bacterial growth. To further improve these properties, the composition of copper-based cathodes with various additions of tin and titanium, and with the addition of the following rare earth elements: cerium and lanthanum, which will be subjected to layer sputtering in the magnetron and microbiological tests as part of the next stages of the project, was modified.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4992
Author(s):  
Ruimeng Shi ◽  
Xiaoming Li ◽  
Yaru Cui ◽  
Junxue Zhao ◽  
Chong Zou ◽  
...  

Nickel slags can be produced through ferronickel preparation by the pyrometallurgical processing of laterite nickel ores; however, such techniques are underutilized at present, and serious environmental problems arise from the stockpiling of such nickel ores. In this study, a modification to the process of ferronickel preparation by the direct reduction of carbon bases in laterite nickel ores is proposed. The gangue from the ore is used as a raw material to prepare a cementitious material, with the main components of tricalcium silicate and tricalcium aluminate. By using FactSage software, thermodynamic calculations are performed to analyze the reduction of nickel and iron and the effect of reduction on the formation of tricalcium silicate and tricalcium aluminate. The feasibility of a coupled process to prepare ferronickel and cementitious materials by the direct reduction of laterite nickel ore and gangue calcination, respectively, is discussed under varying thermodynamic conditions. Different warming strategies are applied to experimentally verify the coupled reactions. The coupled preparation of ferronickel and cementitious materials with calcium silicate and calcium aluminate as the main phases in the same experimental process is realized.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1721 ◽  
Author(s):  
Jie Xiao ◽  
Qian Guo ◽  
Liangliang Wei ◽  
Wenting He ◽  
Hongbo Guo

Ytterbium silicate coatings were deposited on SiCf/SiC ceramics matrix composite (CMC) substrates by plasma spray-physical vapor deposition (PS-PVD), and the microstructures and phase constituents of the coatings were studied. The results show that the Yb2SiO5 coating prepared with high power and low pressure (65 kW/2 mbar) had quasi-columnar structure, mainly deposited from the vapor phase, whereas the coating prepared with low power and high pressure (40 kW/10 mbar) had a typical layered structure, mainly deposited from the liquid phase. The deposition efficiency of parameter A (~2 μm/min) was also significantly lower than that of parameter B (~20 μm/min). After annealing at 1300 °C for 20 h, the coating prepared by 65 kW/2 mbar was mainly composed of ytterbium disilicate phase (77.2 wt %). The coating also contained some silicon-rich phase. The coating prepared by 40 kW/10 mbar basically consisted of ytterbium monosilicate (63.6 wt %). In addition, a small amount of silicon-rich phase and ytterbium-rich phase were also present in the coating. Accompanied with calculation results by the FactSage software, the cause of deviations in phase compositions was analyzed.


2019 ◽  
Vol 9 (22) ◽  
pp. 4741
Author(s):  
Xuedong Zhang ◽  
Chaozhen Zheng ◽  
Sanping Liu ◽  
Yanbing Zong ◽  
Qifan Zhou ◽  
...  

Steel slag, clay, quartz, feldspar, and talc were mixed to prepare steel slag ceramics. Crystalline phase transitions, microstructures, and the main physical-mechanical properties (water absorption, linear shrinkage, and flexural strength) of steel slag ceramics for various MgO/Al2O3 ratios were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and mechanical testing. The results indicated the significant effect of the MgO/Al2O3 ratio on these properties. A decrease in the MgO/Al2O3 ratio resulted in a major crystalline phase transformation from quartz and pyroxene phases to quartz and anorthite phases. High MgO content facilitated production of pyroxene phases. High Al2O3 content favored production of anorthite phases. The water absorption of all the samples (below 0.5%) met the Chinese national standard requirements. Samples with an MgO/Al2O3 ratio of 0.6 exhibited excellent flexural strength, reaching 62.20 MPa. FactSage software was used to predict batch viscosity, which increased with decreasing MgO/Al2O3 ratios.


Sign in / Sign up

Export Citation Format

Share Document