The combination of the mineralogical and geochemical composition of shales is considered a key to decipher their environment evolution, weathering, climatic conditions, and provenance. The Upper Cretaceous-Lower Tertiary succession is extensively dispersed in Egypt. The present work is devoted to studying the Dakhla shales of (Maastrichtian- Danian), Duwi (Campanian) and Quseir (pre-Campanian) formations. Chemical and mineralogical analyses were conducted by using seven representative surface sections from Dakhla Oasis. Dakhla shales are dominates by Smectite and kaolinite. The average percentages of SiO2, Al2O3, CaO, MgO, Na2O and K2O are subordinate values. In contrast, Al2O3 contents of Dakhla shale, TiO2, P2O5 and Fe2O3, contents are relatively higher than common shale composition. The CIA and CIW high values due to clay minerals and the absence of feldspars. This is also confirmed by the smectite domination and subordinate kaolinite in these formations. The ICV values for Dakhla and Duwi shales are 0.59 and 0.74 (ICV < 1). The shale is mature and deposited in a quiescent environment. Whereas the ICV for Quseir shale is 1.24, it can be incidental that it is immature. The shale is wholly detrital and a product of moderate to intensive weathering. The provenance was constituted of granitic and basaltic source rocks, and the parent provenance is basalt. Consequently, the shale is deposited under fluvio-marine environments, and the prevailed condition was of alkaline chemical affinity probably passed through different environments varying from a fluvial, eolian and shallow marine.