aboveground litter
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 20)

H-INDEX

15
(FIVE YEARS 4)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yanli Jing ◽  
Peng Tian ◽  
Qingkui Wang ◽  
Weibin Li ◽  
Zhaolin Sun ◽  
...  

Abstract Background Inputs of above- and belowground litter into forest soils are changing at an unprecedented rate due to continuing human disturbances and climate change. Microorganisms drive the soil carbon (C) cycle, but the roles of above- and belowground litter in regulating the soil microbial community have not been evaluated at a global scale. Methods Here, we conducted a meta-analysis based on 68 aboveground litter removal and root exclusion studies across forest ecosystems to quantify the roles of above- and belowground litter on soil microbial community and compare their relative importance. Results Aboveground litter removal significantly declined soil microbial biomass by 4.9% but root exclusion inhibited it stronger, up to 11.7%. Moreover, the aboveground litter removal significantly raised fungi by 10.1% without altering bacteria, leading to a 46.7% increase in the fungi-to-bacteria (F/B) ratio. Differently, root exclusion significantly decreased the fungi by 26.2% but increased the bacteria by 5.7%, causing a 13.3% decrease in the F/B ratio. Specifically, root exclusion significantly inhibited arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and actinomycetes by 22.9%, 43.8%, and 7.9%, respectively. The negative effects of aboveground litter removal on microbial biomass increased with mean annual temperature and precipitation, whereas that of root exclusion on microbial biomass did not change with climatic factors but amplified with treatment duration. More importantly, greater effects of root exclusion on microbial biomass than aboveground litter removal were consistent across diverse forest biomes (expect boreal forests) and durations. Conclusions These data provide a global evidence that root litter inputs exert a larger control on microbial biomass than aboveground litter inputs in forest ecosystems. Our study also highlights that changes in above- and belowground litter inputs could alter soil C stability differently by shifting the microbial community structure in the opposite direction. These findings are useful for predicting microbe-mediated C processes in response to changes in forest management or climate.


2021 ◽  
Vol 1 ◽  
Author(s):  
Sebastian Preusser ◽  
Patrick Liebmann ◽  
Andres Stucke ◽  
Johannes Wirsching ◽  
Karolin Müller ◽  
...  

Litter-derived dissolved organic carbon (DOC) is considered to be a major source of stabilised C in soil. Here we investigated the microbial utilisation of litter-derived DOC within an entire soil profile using a stable isotope labelling experiment in a temperate beech forest. The natural litter layer of a Dystric Cambisol was replaced by 13C enriched litter within three areas of each 6.57 m−2 for 22 months and then replaced again by natural litter (switching-off the 13C input). Samples were taken continuously from 0 to 180 cm depths directly after the replacement of the labelled litter, and 6 and 18 months thereafter. We followed the pulse of 13C derived from aboveground litter into soil microorganisms through depth and over time by analysing 13C incorporation into microbial biomass and phospholipid fatty acids. Throughout the sampling period, most of the litter-derived microbial C was found in the top cm of the profile and only minor quantities were translocated to deeper soil. The microbial 13C stocks below 30 cm soil depth at the different samplings accounted constantly for only 6–12% of the respective microbial 13C stocks of the entire profile. The peak in proportional enrichment of 13C in subsoil microorganisms moved from upper (≤ 80 cm soil depth) to lower subsoil (80–160 cm soil depth) within a period of 6 months after switch-off, and nearly disappeared in microbial biomass after 18 months (< 1%), indicating little long-term utilisation of litter-derived C by subsoil microorganisms. Among the different microbial groups, a higher maximum proportion of litter-derived C was found in fungi (up to 6%) than in bacteria (2%), indicating greater fungal than bacterial dependency on litter-derived C in subsoil. However, in contrast to topsoil, fungi in subsoil had only a temporarily restricted increase in litter C incorporation, while in the Gram-positive bacteria, the C incorporation in subsoil raised moderately over time increasingly contributing to the group-specific C stock of the entire profile (up to 9%). Overall, this study demonstrated that microorganisms in topsoil of a Dystric Cambisol process most of the recently deposited aboveground litter C, while microbial litter-derived C assimilation in subsoil is low.


2021 ◽  
Author(s):  
Shan Xu ◽  
Emma J. Sayer ◽  
Nico Eisenhauer ◽  
Xiankai Lu ◽  
Junjian Wang ◽  
...  

2020 ◽  
Vol 17 (12) ◽  
pp. 3099-3113
Author(s):  
Patrick Liebmann ◽  
Patrick Wordell-Dietrich ◽  
Karsten Kalbitz ◽  
Robert Mikutta ◽  
Fabian Kalks ◽  
...  

Abstract. In contrast to mineral topsoils, in subsoils the origin and processes leading to the formation and stabilization of organic matter (OM) are still not well known. This study addresses the fate of litter-derived carbon (C) in whole soil profiles with regard to the conceptual cascade model, which proposes that OM formation in subsoils is linked to sorption–microbial processing–remobilization cycles during the downward migration of dissolved organic carbon (DOC). Our main objectives were to quantify the contribution of recent litter to subsoil C stocks via DOC translocation and to evaluate the stability of litter-derived OM in different functional OM fractions. A plot-scale stable isotope-labeling experiment was conducted in a temperate beech forest by replacing the natural litter layer with 13C enriched litter on an area of 20 m2 above a Dystric Cambisol. After 22 months of field exposure, the labeled litter was replaced again by natural litter and soil cores were drilled down to 180 cm soil depth. Water extraction and density fractionation were combined with stable isotope measurements in order to link the fluxes of recent litter-derived C to its allocation into different functional OM fractions. A second sampling was conducted 18 months later to further account for the stability of translocated young litter-derived C. Almost no litter-derived particulate OM (POM) entered the subsoil, suggesting root biomass as the major source of subsoil POM. The contribution of aboveground litter to the formation of mineral-associated OM (MAOM) in topsoils (0–10 cm) was 1.88±0.83 g C m−2 and decreased to 0.69±0.19 g C m−2 in the upper subsoil (10–50 cm) and 0.01±0.02 g C m−2 in the deep subsoil >100 cm soil depth during the 22 months. This finding suggests a subordinate importance of recent litter layer inputs via DOC translocation to subsoil C stocks, and implies that most of the OM in the subsoil is of older age. Smaller losses of litter-derived C within MAOM of about 66 % compared to POM (77 %–89 %) over 18 months indicate that recent carbon can be stabilized by interaction with mineral surfaces; although the overall stabilization in the sandy study soils is limited. Our isotope-labeling approach supports the concept of OM undergoing a sequence of cycles of sorption, microbial processing, and desorption while migrating down a soil profile, which needs to be considered in models of soil OM formation and subsoil C cycling.


Sign in / Sign up

Export Citation Format

Share Document