nb5si3 phase
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 1)

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3549 ◽  
Author(s):  
Sung Lee ◽  
Ki Park ◽  
Jang-Won Kang ◽  
Yanghoo Kim ◽  
Hyun-Su Kang ◽  
...  

In this study, the sintering behaviors of Nb-6Mo-20Si-3Cr (at percentage) in situ composite powders were studied. The Nb alloy powder was fabricated by a hydrogenation-dehydrogenation method, and both the alloy ingot and powders consisted of two phases: An Nb metal phase and the α-Nb5Si3 phase. Consolidation of the alloy powders was performed at 1500, 1600, and 1700 °C using spark plasma sintering, and the microstructures and phases formed at various sintering temperatures were analyzed. Micropores were observed in the compact sintered at 1500 °C due to the lack of complete densification at that temperature. The densification was completed at 1600 °C and the microstructure was slightly coarsened at 1700 °C compared to the microstructure of the compact sintered at 1600 °C. The microstructures prepared by the powder metallurgy method were finer than the microstructure of the ingot prepared by the casting method. The phase formation behavior varied according to the sintering temperature. Specifically, the α-Nb5Si3 phase, which is a stable structure of the Nb5Si3 phase at a low temperature, was transformed to the β-Nb5Si3 phase (which is stable at a high temperature) with an increasing sintering temperature.


2018 ◽  
Vol 741 ◽  
pp. 51-58 ◽  
Author(s):  
Fuxin Wang ◽  
Liangshun Luo ◽  
Xianyu Meng ◽  
Yanjin Xu ◽  
Liang Wang ◽  
...  

2013 ◽  
Vol 41 ◽  
pp. 104-112 ◽  
Author(s):  
N. Sekido ◽  
K. Hildal ◽  
R. Sakidja ◽  
J.H. Perepezko
Keyword(s):  

Author(s):  
Y. L. Li ◽  
C. L. Ma ◽  
H. Zhang

The progresses in high temperature materials encourage the development of turbine engine in terms of thrust and efficiency. Ni-based superalloys, which are predominant in elevated temperature application, have limited potential to raise serving temperature. In-situ composites, such as Cr-Cr3Si, NiAl-Cr and Nb-Nb5Si3 eutectic alloys, consisting of a ductile metallic phase and a hard intermetallic phase, are attractive candidates to replace Ni-based superalloys. The microstructure and mechanical properties of these in-situ composites are widely investigated. However, little work is focused on crystallography of in-situ composites, except for preferred growth direction and crystallographic orientation relationship. In this paper, Nb-Si-Mo-based alloys were fabricated by non-consumable arc melting, and then were directionally solidified in an optical floating zone (OFZ) melting furnace. The crystallographic orientation evolutions in Nb-Nb5Si3 eutectic alloy are studied by electron back-scattered diffraction (EBSD) analyses. First, the effect of solidification condition on crystallographic orientation is examined. The as-cast alloy displays cellular microstructure. The Nb phase shows different crystallographic orientations in different cells, while the Nb5Si3 phase shows similar crystallographic orientation in a number of cells. In directionally solidified alloys, when growth rate is 5mm/h without seed rod rotation, the grain sizes of Nb and Nb5Si3 are both several millimeter. As growth rate rises or seed rod rotates, the grain size of Nb decreases much more drastically than that of Nb5Si3. Thus, solidification condition is supposed to influence nucleation of the Nb phase rather than the Nb5Si3 phase. Second, the effect of annealing on crystallographic orientation is studied. The Nb5Si3 has three allotropic phases. The allotropic phase transformations occur through annealing, during which the Nb5Si3 grain size decreases.


2006 ◽  
Vol 14 (4) ◽  
pp. 392-395 ◽  
Author(s):  
Wei Li ◽  
Haibo Yang ◽  
Aidang Shan ◽  
Lanting Zhang ◽  
Jiansheng Wu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document