ground magnetic
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 62)

H-INDEX

24
(FIVE YEARS 2)

Author(s):  
Larry R. Lyons ◽  
Yukitoshi Nishimura ◽  
Shunrong Zhang ◽  
Anthea Coster ◽  
Jiang Liu ◽  
...  

We use simultaneous auroral imaging, radar flows, and total electron content (TEC) measurements over Alaska to examine whether there is a direct connection of large-scale traveling ionospheric disturbances (LSTIDs) to auroral streamers and associated flow channels having significant ground magnetic decreases. Observations from seven nights with clearly observable flow channels and/or auroral streamers were selected for analysis. Auroral observations allow identification of streamers, and TEC observations detect ionization enhancements associated with streamer electron precipitation. Radar observations allow direct detection of flow channels. The TEC observations show direct connection of streamers to TIDs propagating equatorward from the equatorward boundary of the auroral oval. The TIDs are also distinguished from the streamers to which they connect by their wave-like TEC fluctuations moving more slowly equatorward than the TEC enhancements from streamer electron precipitation. TIDs previously observed propagating equatorward from the auroral oval have been identified as LSTIDs. Thus, the TIDs here are likely LSTIDs, but we lack sufficient TEC coverage necessary to demonstrate that they are indeed large scale. Furthermore, each of our events shows TID’s connection to groups of a few streamers and flow channels over a period in the order of 15 min and a longitude range of ∼15–20°, and not to single streamers. (Groups of streamers are common during substorms. However, it is not currently known if streamers and associated flow channels typically occur in such groups.) We also find evidence that a flow channel must lead to a sufficiently large ionospheric current for it to lead to a detectable LSTID, with a few tens of nT ground magnetic field decreases not being sufficient.


Author(s):  
Chih-Ping Wang ◽  
Xueyi Wang ◽  
Terry Z. Liu ◽  
Yu Lin

Mesoscale (on the scales of a few minutes and a few RE) magnetosheath and magnetopause perturbations driven by foreshock transients have been observed in the flank magnetotail. In this paper, we present the 3D global hybrid simulation results to show qualitatively the 3D structure of the flank magnetopause distortion caused by foreshock transients and its impacts on the tail magnetosphere and the ionosphere. Foreshock transient perturbations consist of a low-density core and high-density edge(s), thus, after they propagate into the magnetosheath, they result in magnetosheath pressure perturbations that distort magnetopause. The magnetopause is distorted locally outward (inward) in response to the dip (peak) of the magnetosheath pressure perturbations. As the magnetosheath perturbations propagate tailward, they continue to distort the flank magnetopause. This qualitative explains the transient appearance of the magnetosphere observed in the flank magnetosheath associated with foreshock transients. The 3D structure of the magnetosheath perturbations and the shape of the distorted magnetopause keep evolving as they propagate tailward. The transient distortion of the magnetopause generates compressional magnetic field perturbations within the magnetosphere. The magnetopause distortion also alters currents around the magnetopause, generating field-aligned currents (FACs) flowing in and out of the ionosphere. As the magnetopause distortion propagates tailward, it results in localized enhancements of FACs in the ionosphere that propagate anti-sunward. This qualitatively explains the observed anti-sunward propagation of the ground magnetic field perturbations associated with foreshock transients.


2021 ◽  
Vol 20 (2) ◽  
pp. 99-106
Author(s):  
O.I. Popoola ◽  
O.A. Adenuga ◽  
E.O. Joshua

The geological map of the old western region of Nigeria indicates the presence of iron ore deposit at Iboro village Ogun state (7.9983o - 7.99933o N, 3.5790o - 3.5890o E). Hence a ground magnetic survey was carried out at a location at Iboro village so as to delineate the subsurface magnetic anomalies and to know whether the anomalies favour accumulation of magnetic minerals. The survey was carried out using high resolution proton precession magnetometer model G-856X. Eight traverses were run at 5m separations and earth magnetic intensity values were measured at 10m intervals along each traverse; the acquired data were corrected for drift. The residual anomalies obtained by removal of regional gradient from observed data using trend analysis were presented as profiles and maps. The treated data were qualitatively and quantitatively interpreted and the results gave values for the total ground magnetic anomalies that varied between a minimum and maximum peak values of about -33.0 and 30.6nT respectively. Depth to the basement rock was estimated using Peter’s half slope method which gave a maximum depth of about 13m. The contour maps and the total relative graphs present the subsurface picture of the geological structure that is assumed to harbour the metallic minerals through the action of the field towards the concentration of anomalies. It was suspected that the overburden was relatively thin in the study area and the minerals were at a shallow depth.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5736
Author(s):  
Filippo Accomando ◽  
Andrea Vitale ◽  
Antonello Bonfante ◽  
Maurizio Buonanno ◽  
Giovanni Florio

The compensation of magnetic and electromagnetic interference generated by drones is one of the main problems related to drone-borne magnetometry. The simplest solution is to suspend the magnetometer at a certain distance from the drone. However, this choice may compromise the flight stability or introduce periodic data variations generated by the oscillations of the magnetometer. We studied this problem by conducting two drone-borne magnetic surveys using a prototype system based on a cesium-vapor magnetometer with a 1000 Hz sampling frequency. First, the magnetometer was fixed to the drone landing-sled (at 0.5 m from the rotors), and then it was suspended 3 m below the drone. These two configurations illustrate endmembers of the possible solutions, favoring the stability of the system during flight or the minimization of the mobile platform noise. Drone-generated noise was filtered according to a CWT analysis, and both the spectral characteristics and the modelled source parameters resulted analogously to that of a ground magnetic dataset in the same area, which were here taken as a control dataset. This study demonstrates that careful processing can return high quality drone-borne data using both flight configurations. The optimal flight solution can be chosen depending on the survey target and flight conditions.


2021 ◽  
Author(s):  
Manoj Nair ◽  
Arnaud Chulliat ◽  
Adam Woods ◽  
Patrick Alken ◽  
Brian Meyer ◽  
...  

Abstract Magnetic wellbore positioning depends on an accurate representation of the Earth's magnetic field,where the borehole azimuth is inferred by comparing the magnetic field measured-whiledrilling (MWD) with a geomagnetic reference model. Therefore, model accuracy improvements reduce the position uncertainties. An improved high-resolution model describing the core, crustal and external components of the magnetic field is presented, and it is validated with anindependent set of measurements. Additionally, we benchmark it against other high-resolution geomagnetic models. The crustal part of the improved high-definition model is based on NOAA/NCEI's latest magnetic survey compilation "EMAG2v3" which includes over 50 millionnew observations in several parts of the world, including the Gulf of Mexico and Antarctica, and does not rely on any prior information from sea-floor geology, unlike earlier versions. The core field part of the model covers years 1900 through 2020 andis inferred from polar-orbiting satellite data as well as ground magnetic observatory data. The external field part is modelled to degree and order 1 for years 2000 through 2020. The new model has internal coefficients to spherical harmonic degree and order 790, resolving magnetic anomalies to approximately 51 km wavelength at the equator. In order to quantitatively assess its accuracy, the model was compared with independent shipborne, airborne and ground magnetic measurements. We find that the newmodel has comparable or smaller errors than the other models benchmarkedagainst it over the regions of comparisons. Additionally, we compare theimproved model against magnetic datacollected from MWD; the residual error lies well within the accepted industry error model, which may lead tofuture error model improvements.


2021 ◽  
Author(s):  
Creszyl Joy J. Arellano ◽  
Leo T. Armada ◽  
Carla B. Dimalanta ◽  
Karlo L. Queaño ◽  
Eric S. Andal ◽  
...  

2021 ◽  
Vol 26 (52) ◽  
pp. 80-96
Author(s):  
Erdene Batbaatar ◽  
Munkhjargal Todbileg ◽  
Otgonbayar Sansar ◽  
Baatar Bataa

The well-known Oyu Tolgoi Cu-Au group deposits can be divided into three main deposits: Hugo Dummett deposit (Hugo North and Hugo South), Oyut deposits (South Oyu, Southwest Oyu and Central Oyu), and Heruga deposit in the south. These deposits sit along 26 km long, north-northeast trending belt termed as the Oyu Tolgoi trend. This paper reviews investigations on geophysical signatures of the South Oyu, Southwest Oyu and Central Oyu deposits and compares geophysical models of the mineral deposits with their lithology, alteration, mineralization, and structures. A variety of datasets including induced polarization, ground magnetic, gravity survey are used in the study and generated inversion products of ground magnetic and gravity data with integrated interpretation. Typical responses from the Oyut deposits are: up to 0.1 mGal positive gravity anomaly above background, 100–200 nT low or high magnetic anomaly compared to background depending on the geological situations, and from 12 mV/V to 30 mV/V chargeability anomalies and low resistivity signatures from 100 ohm.m to 400 ohm.m. The interpreted geological-geophysical models of porphyry Cu-Au deposits presents in this study have emphasis on integrated interpretation of geophysical techniques, and inversions of gravity and magnetic data in gold rich porphyry copper system.


Sign in / Sign up

Export Citation Format

Share Document