Abstract
Deriving a local geoid model has drawn much research interest in the last decade, in an endeavour to minimize the errors in orthometric heights calculations, inherited by the use of global geoid reference models. In most parts of the earth, the local geoid surface may be tens of meters away from the Global Reference biaxial Ellipsoid (WGS84), which create numerus problems in topographic, environmental and navigational applications. Several methods have been developed for optimizing the precision of the calculation of the geoid heights undulations and the accuracy of the corresponding orthometric heights calculations. The optimization refers either to the method used for data acquisition, or to the geometrical method used for the determination of the best fit local geoid model. In the present work, we focus on the reference ellipsoid used for the geometric and geoid heights determination and develop a method to provide the one that fits best to the local geoid surface. Moreover, we consider relatively small sea regions and near to coast areas, where the usual methods for data acquisition fail more or less, and we pay attention in two directions: To obtain accurate measured data and to have the best possible reference ellipsoid for the area at hand. In this due, we use the “GNSS-on-boat” methodology to obtain direct sea level data, which we induce in a Moore Penrose pseudoinverse procedure to calculate the best fit triaxial ellipsoid. This locally optimized reference ellipsoid minimizes the geometric heights in the region at hand. The method is applied in two closed sea areas in Greece, namely Corinthian and Patra’s gulf and also in four regions in the Ionian Sea, which exhibit significant geoid alterations. Taking into account all factors of uncertainty, the precision of the mean sea level surface, produced by the “GNSS on boat” methodology, had been estimated at 5.43 cm for the gulf of Patras, at 3.76 cm for the Corinthian gulf and at 3.31 for the Ionian and Adriatic Sea areas. The average difference of this surface and the local triaxial reference ellipsoid, calculated in this work, is found to be less than 15 cm, whereas the corresponding difference with respect to WGS84 is of the order of 30m.