constructive proof
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 27)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-29
Author(s):  
Zi Wang ◽  
Aws Albarghouthi ◽  
Gautam Prakriya ◽  
Somesh Jha

To verify safety and robustness of neural networks, researchers have successfully applied abstract interpretation , primarily using the interval abstract domain. In this paper, we study the theoretical power and limits of the interval domain for neural-network verification. First, we introduce the interval universal approximation (IUA) theorem. IUA shows that neural networks not only can approximate any continuous function f (universal approximation) as we have known for decades, but we can find a neural network, using any well-behaved activation function, whose interval bounds are an arbitrarily close approximation of the set semantics of f (the result of applying f to a set of inputs). We call this notion of approximation interval approximation . Our theorem generalizes the recent result of Baader et al. from ReLUs to a rich class of activation functions that we call squashable functions . Additionally, the IUA theorem implies that we can always construct provably robust neural networks under ℓ ∞ -norm using almost any practical activation function. Second, we study the computational complexity of constructing neural networks that are amenable to precise interval analysis. This is a crucial question, as our constructive proof of IUA is exponential in the size of the approximation domain. We boil this question down to the problem of approximating the range of a neural network with squashable activation functions. We show that the range approximation problem (RA) is a Δ 2 -intermediate problem, which is strictly harder than NP -complete problems, assuming coNP ⊄ NP . As a result, IUA is an inherently hard problem : No matter what abstract domain or computational tools we consider to achieve interval approximation, there is no efficient construction of such a universal approximator. This implies that it is hard to construct a provably robust network, even if we have a robust network to start with.


Author(s):  
David P. Bourne ◽  
Charlie P. Egan ◽  
Beatrice Pelloni ◽  
Mark Wilkinson

AbstractWe give a new and constructive proof of the existence of global-in-time weak solutions of the 3-dimensional incompressible semi-geostrophic equations (SG) in geostrophic coordinates, for arbitrary initial measures with compact support. This new proof, based on semi-discrete optimal transport techniques, works by characterising discrete solutions of SG in geostrophic coordinates in terms of trajectories satisfying an ordinary differential equation. It is advantageous in its simplicity and its explicit relation to Eulerian coordinates through the use of Laguerre tessellations. Using our method, we obtain improved time-regularity for a large class of discrete initial measures, and we compute explicitly two discrete solutions. The method naturally gives rise to an efficient numerical method, which we illustrate by presenting simulations of a 2-dimensional semi-geostrophic flow in geostrophic coordinates generated using a numerical solver for the semi-discrete optimal transport problem coupled with an ordinary differential equation solver.


CAUCHY ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 73-83
Author(s):  
Ikhsan Maulidi ◽  
Bonno Andri Wibowo ◽  
Nina Valentika ◽  
Muhammad Syazali ◽  
Vina Apriliani

The nonhomogeneous Poisson process is one of the most widely applied stochastic processes. In this article, we provide a confidence interval of the intensity estimator in the presence of a periodic multiplied by trend power function. This estimator's confidence interval is an application of the formulation of the estimator asymptotic distribution that has been given in previous studies. In addition, constructive proof of the convergent in probability has been provided for all power functions.


Author(s):  
Daehyun Kim ◽  
Xiaoxi Li

This paper defines a general framework to study infinitely repeated games with time-dependent discounting in which we distinguish and discuss both time-consistent and -inconsistent preferences. To study the long-term properties of repeated games, we introduce an asymptotic condition to characterize the fact that players become more and more patient; that is, the discount factors at all stages uniformly converge to one. Two types of folk theorems are proven without the public randomization assumption: the asymptotic one, that is, the equilibrium payoff set converges to the feasible and individual rational set as players become patient, and the uniform one, that is, any payoff in the feasible and individual rational set is sustained by a single strategy profile that is an approximate subgame perfect Nash equilibrium in all games with sufficiently patient discount factors. We use two methods for the study of asymptotic folk theorem: the self-generating approach and the constructive proof. We present the constructive proof in the perfect-monitoring case and show that it can be extended to time-inconsistent preferences. The self-generating approach applies to the public-monitoring case but may not extend to time-inconsistent preferences because of a nonmonotonicity result.


Author(s):  
Marcus Kaiser

We consider dynamic equilibria for flows over time under the fluid queuing model. In this model, queues on the links of a network take care of flow propagation. Flow enters the network at a single source and leaves at a single sink. In a dynamic equilibrium, every infinitesimally small flow particle reaches the sink as early as possible given the pattern of the rest of the flow. Although this model has been examined for many decades, progress has been relatively recent. In particular, the derivatives of dynamic equilibria have been characterized as thin flows with resetting, which allows for more structural results. Our two main results are based on the formulation of thin flows with resetting as a linear complementarity problem and its analysis. We present a constructive proof of existence for dynamic equilibria if the inflow rate is right-monotone. The complexity of computing thin flows with resetting, which occurs as a subproblem in this method, is still open. We settle it for the class of two-terminal, series-parallel networks by giving a recursive algorithm that solves the problem for all flow values simultaneously in polynomial time.


Author(s):  
Hans L. Bodlaender ◽  
Josse van Dobben de Bruyn ◽  
Dion Gijswijt ◽  
Harry Smit

AbstractIn this paper, we give a constructive proof of the fact that the treewidth of a graph is at most its divisorial gonality. The proof gives a polynomial time algorithm to construct a tree decomposition of width at most k, when an effective divisor of degree k that reaches all vertices is given. We also give a similar result for two related notions: stable divisorial gonality and stable gonality.


2021 ◽  
Author(s):  
Jeremie M. Unterberger

Abstract We give a new constructive proof of the infrared behavior of the Euclidean Gross-Neveu model in two dimensions with small coupling and large component number N. Our argument does not rely on the use of an intermediate (auxiliary bosonic) field. Instead bubble series are resummed by hand, and determinant bounds replaced by a control of local factorials relying on combinatorial arguments and Pauli's principle. The discrete symmetry-breaking is ensured by considering the model directly with a mass counterterm chosen in such a way as to cancel tadpole diagrams. Then the fermion two-point function is shown to decay (quasi-)exponentially as in [12]/


Author(s):  
Jerome Lemoine ◽  
Irene Marin-Gayte ◽  
Arnaud Munch

The null distributed controllability of the semilinear heat equation $\partial_t y-\Delta y + g(y)=f \,1_{\omega}$ assuming that $g\in C^1(\mathbb{R})$ satisfies the growth condition $\limsup_{r\to \infty} g(r)/(\vert r\vert \ln^{3/2}\vert r\vert)=0$ has been obtained by Fern\'andez-Cara and Zuazua in 2000. The proof based on a non constructive fixed point theorem makes use of precise estimates of the observability constant for a linearized wave equation. Assuming that $g^\prime$ is bounded and uniformly H\"older continuous on $\mathbb{R}$ with exponent $p\in (0,1]$, we design a constructive proof yielding an explicit sequence converging strongly to a controlled solution for the semilinear equation, at least with order $1+p$ after a finite number of iterations. The method is based on a least-squares approach and coincides with a globally convergent damped  Newton methods: it guarantees the convergence whatever be the initial element of the sequence. Numerical experiments in the one dimensional setting illustrate our analysis.


2021 ◽  
Vol 13 (2) ◽  
pp. 1-25
Author(s):  
Jin-yi Cai ◽  
Artem Govorov

Graph homomorphism has been an important research topic since its introduction [20]. Stated in the language of binary relational structures in that paper [20], Lovász proved a fundamental theorem that, for a graph H given by its 0-1 valued adjacency matrix, the graph homomorphism function G ↦ hom( G , H ) determines the isomorphism type of H . In the past 50 years, various extensions have been proved by many researchers [1, 15, 21, 24, 26]. These extend the basic 0-1 case to admit vertex and edge weights; but these extensions all have some restrictions such as all vertex weights must be positive. In this article, we prove a general form of this theorem where H can have arbitrary vertex and edge weights. A noteworthy aspect is that we prove this by a surprisingly simple and unified argument. This bypasses various technical obstacles and unifies and extends all previous known versions of this theorem on graphs. The constructive proof of our theorem can be used to make various complexity dichotomy theorems for graph homomorphism effective in the following sense: it provides an algorithm that for any H either outputs a P-time algorithm solving hom(&sdot, H ) or a P-time reduction from a canonical #P-hard problem to hom(&sdot, H ).


Author(s):  
Piotr Antoni Kozarzewski

We present a constructive proof of the fact, that for any subset $A \subseteq \R^m$ and a countable family $F$ of bounded functions $f: A \to R$ there exists a compactification $A' \subset \ell^2$ of $A$ such that every function $f \in F$ possesses a continuous extension to a function $\bar{f}: A' \to \R$. However related to some classical theorems, our result is direct and hence applicable in Calculus of Variations. Our construction is then used to represent limits of weakly convergent sequences $\{f(u^\nu)\}$ via methods related to DiPerna-Majda measures. In particular, as our main application, we generalise the Representation Theorem from the Calculus of Variations due to Kałamajska.


Sign in / Sign up

Export Citation Format

Share Document