decomposition principle
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
An-qi Li ◽  
Cheng-you Yin ◽  
Qian-qian Zhang ◽  
Yong-ji Gan

To predict the propagation of radio waves in the environment of dielectric ground and dielectric obstacles, a new two-way parabolic equation (2W-PE) method based on the domain decomposition principle and surface impedance boundary conditions (SIBC) is proposed. First, we decompose the obstacle area into different subdomains and derive the SIBC in each subdomain in detail; then, the discrete hybrid Fourier transform (DMFT) in the upper subdomain and finite difference (FD) algorithm in the lower subdomain is used to solve 2W-PE combined with SIBC, respectively. After that, we explain the algorithm steps in the process of calculating the total field, compared with the traditional 2W-PE, and then finally introduce the method of moments (MoM) combined with the enhanced discrete complex image (E-DCIM) method for accuracy verification of the new 2W-PE algorithm. The simulation results show that no matter how the obstacle medium parameters change, the results of 2W-PE method proposed in this paper and MoM are always in good agreement, which proves the accuracy of 2W-PE and its superiority in speed. Therefore, this paper provides a reliable and efficient method for solving the problem of radio wave propagation in the presence of obstacles, especially in the case of low-lossy obstacles.


2021 ◽  
Vol 31 ◽  
Author(s):  
ROBERT SISON ◽  
TOBY MURRAY

Abstract Proving only over source code that programs do not leak sensitive data leaves a gap between reasoning and reality that can only be filled by accounting for the behaviour of the compiler. Furthermore, software does not always have the luxury of limiting itself to single-threaded computation with resources statically dedicated to each user to ensure the confidentiality of their data. This results in mixed-sensitivity concurrent programs, which might reuse memory shared between their threads to hold data of different sensitivity levels at different times; for such programs, a compiler must preserve the value-dependent coordination of such mixed-sensitivity reuse despite the impact of concurrency. Here we demonstrate, using Isabelle/HOL, that it is feasible to verify that a compiler preserves noninterference, the strictest kind of confidentiality property, for mixed-sensitivity concurrent programs. First, we present notions of refinement that preserve a concurrent value-dependent notion of noninterference that we have designed to support such programs. As proving noninterference-preserving refinement can be considerably more complex than the standard refinements typically used to verify semantics-preserving compilation, our notions include a decomposition principle that separates the semantics preservation from security preservation concerns. Second, we demonstrate that these refinement notions are applicable to verified secure compilation, by exercising them on a single-pass compiler for mixed-sensitivity concurrent programs that synchronise using mutex locks, from a generic imperative language to a generic RISC-style assembly language. Finally, we execute our compiler on a non-trivial mixed-sensitivity concurrent program modelling a real-world use case, thus preserving its source-level noninterference properties down to an assembly-level model automatically. All results are formalised and proved in the Isabelle/HOL interactive proof assistant. Our work paves the way for more fully featured compilers to offer verified secure compilation support to developers of multithreaded software that must handle data of multiple sensitivity levels.


Author(s):  
Andrey A. Kostoglotov ◽  
Anton S. Penkov ◽  
Sergey V. Lazarenko

A method of synthesis of a filter for estimating the state of dynamic systems of Kalman type with an adaptive model built on the basis of the principle of decomposition of the system using kinematic relations from the condition of constancy of motion invariants has been developed. The structure of the model is determined from the condition of the maximum function of the generalized power up to a nonlinear synthesizing function that determines the rate of dissipation and, accordingly, the degree of structural adaptation. The resulting model has an explicit relation with the gradient of the estimation error functional, which makes it possible to adapt to the intensity of regular and random influences and can be used to construct a filter for estimating the state of the Kalman structure. On the basis of the developed method, a discrete algorithm is obtained and its comparative analysis with the classical Kalman filter is carried out.


2020 ◽  
Vol 210 ◽  
pp. 01002
Author(s):  
Andrey Kostoglotov ◽  
Anton Penkov ◽  
Sergey Lazarenko

The problem of synthesis of filters to estimate the state of dynamical systems is considered based on the condition for the maximum of the generalized power function and stationarity of the generalized Lagrangian and Hamiltonian of the estimated system model. The paper demonstrates that the use of invariants in combination with the decomposition principle makes it possible to simplify the equations of controlled motion and reduce them to a system of independent equations in terms of the number of degrees of freedom. This approach reduces the number of unknown parameters of the motion model, which greatly simplifies the adaptation process when developing filters for quasi-optimal estimation of the state parameters of dynamic systems. Comparative analysis of the results of the mathematical simulation shows that the application of the proposed method increases the efficiency of filters of the Kalman structure.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1401 ◽  
Author(s):  
José Manuel Carmona ◽  
José Luis Cortés ◽  
José Javier Relancio

A deformation of special relativistic kinematics (possible signal of a theory of quantum gravity at low energies) leads to a modification of the notion of spacetime. At the classical level, this modification is required when one considers a model including single- or multi-interaction processes, for which absolute locality in terms of canonical spacetime coordinates is lost. We discuss the different alternatives for observable effects in the propagation of a particle over very large distances that emerge from the new notion of spacetime. A central ingredient in the discussion is the cluster decomposition principle, which can be used to favor some alternatives over the others.


Sign in / Sign up

Export Citation Format

Share Document