optical telecommunications
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
mengxi tan ◽  
xingyuan xu ◽  
David Moss

Abstract We report narrowband orthogonally polarized optical RF single sideband generators as well as dual-channel RF equalization, both based on high-Q integrated ring resonators. The devices operate in the optical telecommunications C-band and enable RF operation over a range of either fixed or thermally tunable frequencies. They operate via TE/TM mode birefringence in the resonator. We achieve a very large dynamic tuning range of over 55 dB for both the optical carrier-to-sideband ratio and the dual-channel RF equalization for both the fixed and tunable devices.


2021 ◽  
Author(s):  
David Moss

We review recent work on narrowband orthogonally polarized optical RF single sideband generators as well as dual-channel equalization, both based on high-Q integrated ring resonators. The devices operate in the optical telecommunications C-band and enable RF operation over a range of either fixed or thermally tuneable frequencies. They operate via TE/TM mode birefringence in the resonator. We achieve a very large dynamic tuning range of over 55 dB for both the optical carrier-to-sideband ratio and the dual-channel RF equalization for both the fixed and tunable devices.


2020 ◽  
Author(s):  
David Moss

<div>e review recent work on narrowband orthogonally polarized optical RF single sideband generators as well as dual-channel equalization, both based on high-Q integrated ring resonators. The devices operate in the optical telecommunications C-band and enable RF operation over a range of either fixed or thermally tuneable frequencies. They operate via TE/TM mode birefringence in the resonator. We achieve a very large dynamic tuning range of over 55 dB for both the optical carrier-to-sideband ratio and the dual-channel RF equalization for both the fixed and tunable devices.</div>


2020 ◽  
Author(s):  
David Moss

<div>e review recent work on narrowband orthogonally polarized optical RF single sideband generators as well as dual-channel equalization, both based on high-Q integrated ring resonators. The devices operate in the optical telecommunications C-band and enable RF operation over a range of either fixed or thermally tuneable frequencies. They operate via TE/TM mode birefringence in the resonator. We achieve a very large dynamic tuning range of over 55 dB for both the optical carrier-to-sideband ratio and the dual-channel RF equalization for both the fixed and tunable devices.</div>


2020 ◽  
Author(s):  
David Moss

<div>e review recent work on narrowband orthogonally polarized optical RF single sideband generators as well as dual-channel equalization, both based on high-Q integrated ring resonators. The devices operate in the optical telecommunications C-band and enable RF operation over a range of either fixed or thermally tuneable frequencies. They operate via TE/TM mode birefringence in the resonator. We achieve a very large dynamic tuning range of over 55 dB for both the optical carrier-to-sideband ratio and the dual-channel RF equalization for both the fixed and tunable devices.</div>


Impact ◽  
2020 ◽  
Vol 2020 (2) ◽  
pp. 18-20
Author(s):  
Masataka Nakazawa

A cornerstone of technological advancement in the last century has been the development of ever faster and higher capacity telecommunications. Being able to transmit large amounts of information, at a good rate over long distances is essential for running many of the services, business and industries that we all rely upon. The development of large national and international telecommunication networks underpins the internet and, with it, the World Wide Web. All this powers a huge range of diverse activities as security services, the entertainment industry, national health services and distribution. As more and more people are connected to this network and more and more information is transmitted between these people, the capacity of the network must increase. This can broadly be split into two categories: access – the laying of cables and construction of mobile towers, technology – the creation of improved data transmitting methods that can transmit more data, at a faster rate, further away. The former is a question of private enterprise and public policy, the latter is the domain of engineers and physicists. Professor Masataka Nakazawa, who is based at the Research Institute of Electrical Communication, Tohoku University in Japan, is a world-leading expert in optical telecommunications. Nakazawa and his team have a mission to create new methods through which data can be transmitted using optical networks, recently they have consistently broken records for speed, capacity and efficiency in their cutting-edge optical communication technologies.


2019 ◽  
Vol 9 (19) ◽  
pp. 3964 ◽  
Author(s):  
Shuxia Li ◽  
N. Garry Tarr ◽  
Winnie N. Ye

We explore the monolithic integration of conventional electronics with SOI photonics using the commercial silicon photonics foundry technology offered by A*STAR’s Institute of Microelectronics (IME). This process offers optical waveguide modulators and photodetectors, but was not intended to support transistors. We present the implementation of junction field effect transistors (JFETs) integrated with optical waveguides and photodetectors. A simple SPICE model is developed for the JFETs based on the available ion implant parameters, and the geometry feature size allowed by the technology’s layout rules. We have demonstrated the monolithic integration of photonics and electronics circuits. This work could be useful for application in waveguide sensors and optical telecommunications.


2019 ◽  
Vol 116 (14) ◽  
pp. 6684-6688 ◽  
Author(s):  
Sören Wengerowsky ◽  
Siddarth Koduru Joshi ◽  
Fabian Steinlechner ◽  
Julien R. Zichi ◽  
Sergiy M. Dobrovolskiy ◽  
...  

Quantum entanglement is one of the most extraordinary effects in quantum physics, with many applications in the emerging field of quantum information science. In particular, it provides the foundation for quantum key distribution (QKD), which promises a conceptual leap in information security. Entanglement-based QKD holds great promise for future applications owing to the possibility of device-independent security and the potential of establishing global-scale quantum repeater networks. While other approaches to QKD have already reached the level of maturity required for operation in absence of typical laboratory infrastructure, comparable field demonstrations of entanglement-based QKD have not been performed so far. Here, we report on the successful distribution of polarization-entangled photon pairs between Malta and Sicily over 96 km of submarine optical telecommunications fiber. We observe around 257 photon pairs per second, with a polarization visibility above 90%. Our results show that QKD based on polarization entanglement is now indeed viable in long-distance fiber links. This field demonstration marks the longest-distance distribution of entanglement in a deployed telecommunications network and demonstrates an international submarine quantum communication channel. This opens up myriad possibilities for future experiments and technological applications using existing infrastructure.


Sign in / Sign up

Export Citation Format

Share Document