environmental fluid
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 13)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 9 (4) ◽  
pp. 392
Author(s):  
Byoungjoon Na ◽  
Sangyoung Son ◽  
Jae-Cheon Choi

Accidental oil spills not only deteriorate biodiversity but also cause immediate threats to coastal environments. This study quantitatively investigates the initial dispersion of spilled oil using the environmental fluid dynamics code (EFDC) model, loosely coupled with an endorsed oil spill model (MEDSLIK-II) accounting for time-dependent advection, diffusion, and physiochemical weathering of the surface oil slick. Focusing on local contributing factors (i.e., construction activities) to oil dispersion, the current model is applied to likely oil spills occurring at three different phases of the Songdo LNG terminal construction on a reclaimed site in South Korea. Applied phases pose detailed ship collision scenarios generated based on a proposed construction plan of the terminal. The effects of permeable revetments, required for reclamation, on the currents were also investigated and applied in subsequent oil spill modeling. For each scenario, the simulated results showed distinct patterns in the advection, dispersion, and transformation of the oil slick. Oil absorption into the coast, which causes immense damage to the coastal communities, is found to be highly dependent on the tidal currents, volume of oil spilled, and nearby construction activities.


2021 ◽  
Author(s):  
Wen-Jia Liu ◽  
Christina W. Tsai

<p>The reservoir siltation has been of critical environmental concerns in recent years. The vulnerability and the overdevelopment in the reservoir watershed are the causes of the reservoir sedimentation. While typhoon events happen, in addition to the great amount of sediment volume transported from the upstream to the reservoir region, the density currents may evolve, which will steeply increase turbidity levels for the periods of time. In particular, the Shihmen Reservoir, one of essential hydraulic engineering projects in northern Taiwan, has been exposed to crisis that the sedimentation may fill up in the next few decades. Therefore, in order to maintain the reservoir capacity to an operational extent, modeling the sediment transport patterns in Shihmen Reservoir will utilize the three-dimensional Environmental Fluid Dynamics Code (EFDC) for quantifying sediment concentrations during the typhoon event. Calibration and validation of EFDC are performed by comparing two independent sets of event-based hydrodynamic and sediment concentration data with assistance of the parameter optimization algorithm. Next, the Backward-forward Stochastic Particle Tracking Model (BF-SPTM) is further incorporated into the EFDC hydrodynamic module to check the likelihood of the potential source of sediment particles. Results of simulations are expected to provide a more precise release timing for flow regulation to ensure the effective slag removal for density currents. Additionally, with probable sedimentation sources available for a reservoir, effective land use change and restrictions on overdevelopment of the risk prone areas can be enforced to decrease the sediment yields into the reservoir. It is expected that this incorporation of BF-SPTM into EFDC can be applied to simulate sediment transport in typhoon events, and to provide appropriate reservoir management alternatives.</p><p>Keywords: Environmental Fluid Dynamics Code (EFDC), suspended sediment concentration, Backward-forward Stochastic Particle Tracking Model, Probable sedimentation source</p>


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
T. Dauxois ◽  
T. Peacock ◽  
P. Bauer ◽  
C. P. Caulfield ◽  
C. Cenedese ◽  
...  

2021 ◽  
Vol 53 (1) ◽  
pp. 113-145 ◽  
Author(s):  
C.P. Caulfield

Understanding how turbulence leads to the enhanced irreversible transport of heat and other scalars such as salt and pollutants in density-stratified fluids is a fundamental and central problem in geophysical and environmental fluid dynamics. This review discusses recent research activity directed at improving community understanding, modeling, and parameterization of the subtle interplay between energy conversion pathways, instabilities, turbulence, external forcing, and irreversible mixing in density-stratified fluids. The conceptual significance of various length scales is highlighted, and in particular, the importance is stressed of overturning or scouring in the formation and maintenance of layered stratifications, i.e., robust density distributions with relatively deep and well-mixed regions separated by relatively thin interfaces of substantially enhanced density gradient.


2020 ◽  
Vol 20 (2) ◽  
pp. 227-232
Author(s):  
Hubert Chanson ◽  
Fabian Bombardelli ◽  
Oscar Castro-Orgaz

2020 ◽  
Vol 8 (2) ◽  
pp. 69 ◽  
Author(s):  
Kwang-Ho Lee ◽  
Tag-Gyeom Kim ◽  
Yong-Hwan Cho

The purpose of this study is to investigate the effects of three external forces (tidal current, wind, and waves) on the movement of oil spilled during the Hebei Spirit oil spill accident. The diffusion of the spilled oil was simulated by using a random walk (RW) model that tracks the movement caused by advection-diffusion assuming oil as particles. For oil simulation, the wind drift current generated by wind and tidal current fields were computed by using the environmental fluid dynamics code (EFDC) model. Next, the wave fields were simulated by using the simulating waves nearshore (SWAN) model, and the Stokes drift current fields were calculated by applying the equation proposed by Stokes. The computed tidal currents, wind drift currents, and Stokes drift currents were applied as input data to the RW model. Then, oil diffusion distribution for each external force component was investigated and compared with that obtained from satellite images. When the wind drift currents and Stokes drift currents caused by waves were considered, the diffusion distribution of the spilled oil showed good agreement with that obtained from the observation.


Sign in / Sign up

Export Citation Format

Share Document