regular growth
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 34)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Viktor Bulavin ◽  
Ivan V’unik ◽  
Andrii Kramarenko ◽  
Alexandr Rusinov

The type of short range solvation of Li+, Na+ K+, Rb+, Cs+, NH4+, Cl– , Br–, I–, ClO4– ions has been determined and analyzed in formamide (FA), N-methylformamide (MFA), N-dimethylformamide (DMF) at 298.15 K. In order to determine the type of ion solvation we used familiar-variable quantitative parameter (– ri), where  is the translational displacement length of ion, ri is its structural radius. It was found that the difference (– ri) is equal to the coefficient of attraction friction (CAF) of ions normalized to the solvent viscosity and hydrodynamic coefficient. The sign of the CAF is determined by the sign of the algebraic sum of its ion-molecular and intermolecular components. In amide solutions the studied cations are cosmotropes (positively solvated ((– ri) > 0), structure-making ions) and anions are chaotropes (negatively solvated ((– ri) < 0 ), structure-breaking ions). In the amide series, regardless of the sign (– ri), the near-solvation enhances, which can be explained by the weakening of the specific interaction between the solvent molecules. The decrease of  and respectively (– ri)  with increasing cation radius in a given solvent is the result of weakening of its coordinating force due to the decrease of charge density in the series Li+–Na+–K+–Rb+–Cs+. The increase of  (and (– ri), correspondingly) for the ions studied in the series FA- MFA-DMF can be explained by the weakening of intermolecular interactions in this series, which leads to the strengthening of solvation. It was found that for the halide ions in the series FA-MFA-DMF the regular growth of  parameter is explained by the weakening of the solvent structure. It was shown that Li+ ion with the lowest diffusion coefficient among cations and the highest  value forms kinetically stable complexes in amide solutions.


Author(s):  
Si-Hwa Gwag ◽  
Ye Rim Oh ◽  
Jae Wook Ha ◽  
Eungu Kang ◽  
Hyo-Kyoung Nam ◽  
...  

Abstract Introduction The coronavirus disease 2019 (COVID-19) pandemic has changed everyday life. The Korean government urged schools to close as a measure of social distancing, and children and adolescents seemed to gain weight due to home confinement. We aimed to investigate the trends in weight changes in children during the pandemic period. Materials and Methods This retrospective study included 139 children aged between 6 and 12 years who visited the pediatric endocrine clinic for regular growth follow-up for 1 year during the COVID-19 pandemic. We analyzed changes in the body mass index (BMI), BMI z-score, and proportion of children who were overweight or obese over a period of 1 year. Results The BMI and BMI z-scores of the 139 children increased significantly over the year. The increase was maximum during the first three months of the COVID-19 pandemic, with little change between the third and sixth month of the pandemic. The proportion of children who were overweight or obese increased over time, from 24.5% at the COVID-19 pandemic baseline to 38.1% 1 year later (p < 0.001). Conclusions The COVID-19-related lockdown resulted in significant weight gain in Korean children. Changes in BMI showed different trends depending on the degree of school closure. An overall shift from normal weight to overweight or obesity was observed during the pandemic period.


2021 ◽  
Vol 7 (8) ◽  
pp. 118
Author(s):  
Christoph Priese ◽  
Jörg Töpfer

We have studied the densification, phase formation, microstructure, and permeability of stoichiometric and Fe-deficient Ni-Cu-Zn ferrites of composition Ni0.30Cu0.20Zn0.50+zFe2-zO4-(z/2) with 0 £ z £ 0.06 sintered at temperatures from 900 °C to 1150 °C. The shrinkage is shifted from 1000 °C for z = 0 towards lower temperatures and reaches its maximum rate at 900 °C for z = 0.02. Stoichiometric ferrites show regular growth of single-phase ferrite grains if sintered at Ts ≤ 1100 °C. Sintering at 1150 °C leads to the formation of a small amount of Cu2O, triggering exaggerated grain growth. Fe-deficient compositions (z > 0) form Cu-poor stoichiometric ferrites coexisting with a minority CuO phase after sintering at 900–1000 °C. At Ts ≥ 1050 °C, CuO transforms into Cu2O, and exaggerated grain growth is observed. The formation of Cu oxide second phases is investigated using XRD, SEM, and EDX. The permeability of the ferrites increases with sintering temperature up to a maximum permeability of µ = 230 for z = 0 or µ = 580 for z = 0.02, respectively, at Ts = 1000 °C. At higher sintering temperatures, the permeability decreases, which is due to the formation of a microstructure with intra-crystalline porosity in large grains, and a non-magnetic Cu oxide grain boundary phase.


2021 ◽  
Vol 13 (16) ◽  
pp. 3161
Author(s):  
Dengyue Zhao ◽  
Mingzhu Xiao ◽  
Chunbo Huang ◽  
Yuan Liang ◽  
Zitao Yang

Land use change is an important way for human activities to affect ecosystems. Based on the land use demands and policies, the simulation of future land use changes under different scenarios can test the rationality of socio-economic and policy-oriented land use changes. In this study, we set three scenarios of regular growth, ecological protection, and ecotourism development in 2030 for the Beibu Gulf area, China. We simulated the spatial distribution and evolution characteristics of the future landscape pattern using the Scenario Generator Rule Based Module of InVEST. Meanwhile, the ecosystem service value (ESV) was estimated by the improved unit area value equivalent method to reveal the trend of ESVs under different regional development models. The results indicated that the land use changes in the Beibu Gulf during 1999–2014 showed significant spatial heterogeneity. The farmland was mainly distributed in Beihai, the forestland was located in Fangchenggang, while the orchard was concentrated on Qinzhou. Due to economic construction and urban expansion, construction land and aquaculture land were gradually growing, while farmland and mud flat continued to decrease. Between 2014 and 2030, the total ESV decreased in the regular growth scenario and gradually increased in the ecological protection scenario and ecotourism development scenario. In addition, by comparing the three scenarios, the ecotourism development scenario is a more reasonable model for Guangxi Beibu Gulf area, which realized the trade-off between tourism development and resource conservation. Therefore, regional planners should not only consider maximizing ESVs when planning for ecosystem services, but also strive to maintain a reasonable structure of ecosystem services. Some suggestions were provided in this paper at the macro level and the local development model level respectively, which offered some references for the rational allocation of land resources, ecological environmental protection and ecotourism development in the coastal area of Beibu Gulf.


2021 ◽  
Vol 7 (7) ◽  
pp. 100-105
Author(s):  
T. Mammadov ◽  
A. Seiidli

The research analyzed the growth dynamics of annual shoots of some species of Lonicera L. in Absheron conditions. According to the seasonal dynamics of growth and development of species, Lonicera species are divided into 2 groups: straight and ivy species. The model species include deciduous, semi-evergreen and evergreen species, but these features of their life forms do not affect the growth process. Studies have shown that in the genus Lonicera L., regular growth was observed during the growing season, while in the straight species the growth was completed in July. The observed increase in hydrothermal stress had a positive effect on the growth and branching of the shoots, and an increase was observed. This growth parameter is dominated by ivy Lonicera L. (L. caprifolium and L. etrusca). Intensive growth was observed in Absheron in May-June and September.


Author(s):  
D. A. Nicks ◽  
P. J. Rippon ◽  
G. M. Stallard

AbstractFor a transcendental entire function f, the property that there exists $$r>0$$ r > 0 such that $$m^n(r)\rightarrow \infty $$ m n ( r ) → ∞ as $$n\rightarrow \infty $$ n → ∞ , where $$m(r)=\min \{|f(z)|:|z|=r\}$$ m ( r ) = min { | f ( z ) | : | z | = r } , is related to conjectures of Eremenko and of Baker, for both of which order 1/2 minimal type is a significant rate of growth. We show that this property holds for functions of order 1/2 minimal type if the maximum modulus of f has sufficiently regular growth and we give examples to show the sharpness of our results by using a recent generalisation of Kjellberg’s method of constructing entire functions of small growth, which allows rather precise control of m(r).


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 797
Author(s):  
Alvaro Yogi ◽  
Marina Rukhlova ◽  
Claudie Charlebois ◽  
Ganghong Tian ◽  
Danica B. Stanimirovic ◽  
...  

Synthetic grafts have been developed for vascular bypass surgery, however, the risks of thrombosis and neointimal hyperplasia still limit their use. Tissue engineering with the use of adipose-derived stem cells (ASCs) has shown promise in addressing these limitations. Here we further characterized and optimized the ASC differentiation into smooth muscle cells (VSMCs) induced by TGF-β and BMP-4. TGF-β and BMP-4 induced a time-dependent expression of SMC markers in ASC. Shortening the differentiation period from 7 to 4 days did not impair the functional property of contraction in these cells. Stability of the process was demonstrated by switching cells to regular growth media for up to 14 days. The role of IGFBP7, a downstream effector of TGF-β, was also examined. Finally, topographic and surface patterning of a substrate is recognized as a powerful tool for regulating cell differentiation. Here we provide evidence that a non-woven PET structure does not affect the differentiation of ASC. Taken together, our results indicate that VSMCs differentiated from ASCs are a suitable candidate to populate a PET-based vascular scaffolds. By employing an autologous source of cells we provide a novel alternative to address major issues that reduces long-term patency of currently vascular grafts.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e17560-e17560
Author(s):  
Natalia V. Chernikova ◽  
Ekaterina V. Verenikina ◽  
Yuriy A. Poryvaev ◽  
Tatiana Yu. Myagkova ◽  
Anna P. Menshenina

e17560 Background: The purpose of the study was to analyze the structure and activity of the blood flow in the preserved ovaries after gynecologic surgeries. Methods: We monitored 50 patients (mean age 35.8±0.5 years) using sonography after ovary-sparing hysterectomy for benign, precancerous and preinvasive malignant uterine diseases. For revascularization, the preserved ovaries were attached to the lateral wall of the small pelvis or to the base of round ligaments of the uterus. Results: Ovarian hypertrophy was recorded in 3 women during the first year of the follow-up; the ovaries returned to the initial size without correction by 24 months. By the third year of observation, 94% of women had normal gonadal sizes, and only 2 women had ovarian hypoplasia. During the entire observation period (3 years), in 91% of cases, we could visualize the regular maturation of follicles in the preserved ovaries, which indicated the preservation of ovulatory function. The use of Doppler techniques during 24 months of the follow-up demonstrated that the blood circulation in the attached ovaries after hysterectomy was decreased on the average by 20.3%, compared to the intact ovaries. Conclusions: After the critical period of hysterectomy, the blood flow in the ovaries in almost all patients remains sufficient during the first 2-3 years, stimulating the regular growth of follicles and maintaining the gonadal activity. The quality of life of the operated patients during the first three years of follow-up remains optimal without additional correction with hormone replacement therapy.


Author(s):  
Erwin Prastowo ◽  
Irawan Dwiyanto ◽  
Setyo Budi Santoso

As nitrogen (N) has played an important role in cocoa production, both providing the N-sources alternative materials, and increasing the efficiency of fertilization are urgently required to support both crop and land productivity.  Research aims to investigate the N uptake of cocoa seedlings as results of combination of liquid organic fertilizer (LOF) and urea application. To support the understanding in terms of N dynamics, SPAD (Soil Plant Analysis Development) chlorophyll content, N use efficiency (NUE) and recovery of applied nitrogen (REN) were determined with additional information related to the optimal dosage of urea to be applied to cocoa seedlings. Greenhouse experiment, using ICCRI 08 cocoa seedlings, was carried out in Kaliwining Experimental Station, Indonesian Coffee and Cocoa Research Institute, Jember, East Java. The LOF used for this experiment was made from about 1-month fermentation of cocoa pod waste in a 200 L plastic tank with additional biodecomposer to improve the biodegradation of organic materials. The experiment was designed by a completely randomized design (CRD), and taking into account two factors, i.e. the level of LOF concentration and urea application, as treatments of which their effect was determined through regular growth observations and laboratory determination. The variation of LOF concentration levels are (i) control (B0), (ii) LOF 0.25% (B1), (iii) LOF 0.50% (B2), and (iv) LOF 1% (B3). Additionally, the rates of urea applications include control (P0), 10% of fertilizer recommendation dosage (P1), 25% of fertilizer recommendation dosage (P2), and 50% of fertilizer recommendation dosage (P3). SPAD readings indicate the significant effect of urea and its combination with LOF to the increase in the chlorophyll content by 10 – 20% in compare to control. The total N uptake by cocoa tends to decrease with the increase in the concentration of LOF. With average increase of about 28% compared to control, statistical analysis suggest the insignificant different effect of treatments. The effect of LOF to the increase in the NUE, ranging from 0.50 to 0.80, in combination with specific level of urea. With 50% of urea recommendation dosage, the increase in NUE is above 40% up to 55% compared to non-LOF applied treatments. REN data interpretation indicates the higher of its values for treatments with lower level of urea applications. With the increase in the urea rate, the REN value is decreasing implying the contribution from the input of N. In this level, the REN is down to below 50% showing the lower amount of N required in compare to the N inputs. Relating the dosage of urea with N uptake shows an asymptotic type of curves. It indicates the optimal rate of urea ranging from 0.5 to 1 g urea per pot. The higher amount of LOF applied shows to decrease the optimal dosage of urea required in compare to no LOF application (B0). Though its use as source of nutrients is limited, current research may indicate the potential utilization of LOF through foliar spray to increase the efficiency of urea application.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11062
Author(s):  
Katarzyna Frankowiak ◽  
Ewa Roniewicz ◽  
Jarosław Stolarski

During the Carnian, oligotrophic shallow-water regions of the western Tethys were occupied by small, coral-rich patch reefs. Scleractinian corals, which already contributed to the formation of the reef structure, owed their position most probably to the symbiosis with dinoflagellate algae (zooxanthellae). Using microstructural (regularity of growth increments) and geochemical (oxygen and carbon stable isotopes) criteria of zooxanthellae symbiosis, we investigated whether this partnership was widespread among Carnian scleractinians from the Italian Dolomites (locality Alpe di Specie). Although corals from this locality are renowned from excellent mineralogical preservation (aragonite), their skeletons were rigorously tested against traces of diagenesis Irrespective of their growth forms, well preserved skeletons of corals from the Dolomites, most frequently revealed regular growth bands (low values of coefficient of variation) typical of modern zooxanthellate corals. Paradoxically, some Carnian taxa (Thamnasteriomorpha frechi and Thamnasteriomorphasp.)with highly integrated thamnasterioid colonies which today are formed exclusively by zooxanthellate corals, showed irregular fine-scale growth bands (coefficient of variation of 40% and 41% respectively) that could suggest their asymbiotic status. However, similar irregular skeletal banding is known also in some modern agariciids (Leptoseris fragilis) which are symbiotic with zooxanthellae. This may point to a similar ecological adaptation of Triassic taxa with thamnasterioid colonies. Contrary to occasionally ambiguous interpretation of growth banding, all examined Carnian corals exhibited lack of distinct correlation between carbon (δ13C range between 0.81‰ and 5.81‰) and oxygen (δ18O values range between −4.21‰ and −1.06‰) isotope composition of the skeleton which is consistent with similar pattern in modern zooxanthellates. It is therefore highly likely, that Carnian scleractinian corals exhibited analogous ecological adaptations as modern symbiotic corals and that coral-algal symbiosis that spread across various clades of Scleractinia preceded the reef bloom at the end of the Triassic.


Sign in / Sign up

Export Citation Format

Share Document