thin and thick disks
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 922 (2) ◽  
pp. 211
Author(s):  
Zexi Niu ◽  
Haibo Yuan ◽  
Song Wang ◽  
Jifeng Liu

Abstract Based on the large volume Gaia Early Data Release 3 and LAMOST Data Release 5 data, we estimate the bias-corrected binary fractions of the field late G and early K dwarfs. A stellar locus outlier method is used in this work, which works well for binaries of various periods and inclination angles with single-epoch data. With a well-selected, distance-limited sample of about 90,000 GK dwarfs covering wide stellar chemical abundances, it enables us to explore the binary fraction variations with different stellar populations. The average binary fraction is 0.42 ± 0.01 for the whole sample. Thin-disk stars are found to have a binary fraction of 0.39 ± 0.02, thick-disk stars have a higher one of 0.49 ± 0.02, while inner halo stars possibly have the highest binary fraction. For both the thin- and thick-disk stars, the binary fractions decrease toward higher [Fe/H], [α/H], and [M/H] abundances. However, the suppressing impacts of [Fe/H], [α/H], and [M/H] are more significant for the thin-disk stars than those for the thick-disk stars. For a given [Fe/H], a positive correlation between [α/Fe] and the binary fraction is found for the thin-disk stars. However, this tendency disappears for the thick-disk stars. We suspect that it is likely related to the different formation histories of the thin and thick disks. Our results provide new clues for theoretical works on binary formation.


2020 ◽  
Vol 161 (1) ◽  
pp. 9
Author(s):  
Mariagrazia Franchini ◽  
Carlo Morossi ◽  
Paolo Di Marcantonio ◽  
Miguel Chavez ◽  
Vardan Adibekyan ◽  
...  

2020 ◽  
Vol 643 ◽  
pp. A106
Author(s):  
D. Bashi ◽  
S. Zucker ◽  
V. Adibekyan ◽  
N. C. Santos ◽  
L. Tal-Or ◽  
...  

Context. The stars in the Milky Way thin and thick disks can be distinguished by several properties such as metallicity and kinematics. It is not clear whether the two populations also differ in the properties of planets orbiting the stars. In order to study this, a careful analysis of both the chemical composition and mass detection limits is required for a sufficiently large sample. Currently, this information is still limited only to large radial-velocity (RV) programs. Based on the recently published archival database of the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph, we present a first analysis of low-mass (small) planet occurrence rates in a sample of thin- and thick-disk stars. Aims. We aim to assess the effects of stellar properties on planet occurrence rates and to obtain first estimates of planet occurrence rates in the thin and thick disks of the Galaxy. As a baseline for comparison, we also aim to provide an updated value for the small close-in planet occurrence rate and compare it with the results of previous RV and transit (Kepler) works. Methods. We used archival HARPS RV datasets to calculate detection limits of a sample of stars that were previously analysed for their elemental abundances. For stars with known planets we first subtracted the Keplerian orbit. We then used this information to calculate planet occurrence rates according to a simplified Bayesian model in different regimes of stellar and planet properties. Results. Our results suggest that metal-poor stars and more massive stars host fewer low-mass close-in planets. We find the occurrence rates of these planets in the thin and thick disks to be comparable. In the iron-poor regimes, we find these occurrence rates to be significantly larger at the high-α region (thick-disk stars) as compared with the low-α region (thin-disk stars). In general, we find the average number of close-in small planets (2–100 days, 1–20M⊕) per star (FGK-dwarfs) to be: n¯p = 0.36 ± 0.05, while the fraction of stars with planets is Fh = 0.23−0.03+0.04. Qualitatively, our results agree well with previous estimates based on RV and Kepler surveys. Conclusions. This work provides a first estimate of the close-in small planet occurrence rates in the solar neighbourhood of the thin and thick disks of the Galaxy. It is unclear whether there are other stellar properties related to the Galactic context that affect small-planet occurrence rates, or if it is only the combined effects of stellar metal content and mass. A future larger sample of stars and planets is needed to address those questions.


Universe ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 26 ◽  
Author(s):  
Zdeněk Stuchlík ◽  
Martin Kološ ◽  
Jiří Kovář ◽  
Petr Slaný ◽  
Arman Tursunov

We present a review of the influence of cosmic repulsion and external magnetic fields on accretion disks rotating around rotating black holes and on jets associated with these rotating configurations. We consider both geometrically thin and thick disks. We show that the vacuum energy represented by the relic cosmological constant strongly limits extension of the accretion disks that is for supermassive black holes comparable to extension of largest galaxies, and supports collimation of jets at large distances from the black hole. We further demonstrate that an external magnetic field crucially influences the fate of ionized Keplerian disks causing creation of winds and jets, enabling simultaneously acceleration of ultra-high energy particles with energy up to 10 21 eV around supermassive black holes with M ∼ 10 10 M ⊙ surrounded by sufficiently strong magnetic field with B ∼ 10 4 G. We also show that the external magnetic fields enable existence of “levitating” off-equatorial clouds or tori, along with the standard equatorial toroidal structures, if these carry a non-vanishing, appropriately distributed electric charge.


2020 ◽  
Vol 888 (2) ◽  
pp. 55 ◽  
Author(s):  
Mariagrazia Franchini ◽  
Carlo Morossi ◽  
Paolo Di Marcantonio ◽  
Miguel Chavez ◽  
Vardan Zh. Adibekyan ◽  
...  

2019 ◽  
Vol 625 ◽  
pp. A141 ◽  
Author(s):  
M. Lomaeva ◽  
H. Jönsson ◽  
N. Ryde ◽  
M. Schultheis ◽  
B. Thorsbro

Context. The formation and evolution of the Galactic bulge and the Milky Way is still a debated subject. Observations of the X-shaped bulge, cylindrical stellar motions, and the presumed existence of a fraction of young stars in the bulge have suggested that it formed through secular evolution of the disk and not through gas dissipation and/or mergers, as thought previously. Aims. Our goal was to measure the abundances of six iron-peak elements (Sc, V, Cr, Mn, Co, and Ni) in the local thin and thick disks and in the bulge. These abundances can provide additional observational constraints for Galaxy formation and chemical evolution models, and help us to understand whether the bulge has emerged from the thick disk or not. Methods. We use high-resolution optical spectra of 291 K giants in the local disk mostly obtained by the FIES at NOT (signal-to-noise ratio (S/N) of 80–100) and 45 K giants in the bulge obtained by the UVES/FLAMES at VLT (S/N of 10–80). The abundances are measured using Spectroscopy Made Easy (SME). Additionally, we apply non-local thermodynamic equilibrium corrections to the ratios [Mn/Fe] and [Co/Fe]. The thin and thick disks were separated according to their metallicity, [Ti/Fe], as well as proper motions and the radial velocities from Gaia DR2. Results. The trend of [V/Fe] vs. [Fe/H] shows a separation between the disk components, being more enhanced in the thick disk. Similarly, the [Co/Fe] vs. [Fe/H] trend shows a hint of an enhancement in the local thick disk. The trends of V and Co in the bulge appear to be even more enhanced, although within the uncertainties. The decreasing value of [Sc/Fe] with increasing metallicity is observed in all the components, while our [Mn/Fe] value steadily increases with increasing metallicity in the local disk and the bulge instead. For Cr and Ni we find a flat trend following iron for the whole metallicity range in the disk and the bulge. The ratio of [Ni/Fe] appears slightly overabundant in the thick disk and the bulge compared to the thin disk, although the difference is minor. Conclusions. The somewhat enhanced ratios of [V/Fe] and [Co/Fe] observed in the bulge suggest that the local thick disk and the bulge might have experienced different chemical enrichment and evolutionary paths. However, we are unable to predict the exact evolutionary path of the bulge solely based on these observations. Galactic chemical evolution models could, on the other hand, allow us to predict them using these results.


2017 ◽  
Vol 13 (S334) ◽  
pp. 248-255
Author(s):  
Francoise Combes

AbstractSome highlights are given of the IAU Symposium 334, Rediscovering our Galaxy, held in Potsdam, in July 2017: from the first stars fossil records found in the halo, the carbon-enhanced metal poor CEMP-no, to the cosmological simulations presenting possible scenarios for the Milky Way formation, passing through the chemo-dynamical models of the various components, thin and thick disks, box/peanut bulge, halo, etc. The domain is experiencing (or will be in the near future) huge improvements with precise and accurate stellar ages, provided by astero-seismology, precise stellar distances and kinematics (parallaxes and proper motions from GAIA), and the big data resulting from large surveys are treated with deep learning algorithms.


Author(s):  
David M. Nataf

AbstractThe assembly of the Milky Way bulge is an old topic in astronomy, one now in a period of renewed and rapid development. That is due to tremendous advances in observations of bulge stars, motivating observations of both local and high-redshift galaxies, and increasingly sophisticated simulations. The dominant scenario for bulge formation is that of the Milky Way as a nearly pure disk galaxy, with the inner disk having formed a bar and buckled. This can potentially explain virtually all bulge stars with [Fe/H] ≳ −1.0, which comprise 95% of the stellar population. The evidence is the incredible success in N-body models of this type in making non-trivial, non-generic predictions, such as the rotation curve and velocity dispersion measured from radial velocities, and the spatial morphologies of the peanut/X-shape and the long bar. The classical bulge scenario, whereby the bulge formed from early dissipative collapse and mergers, remains viable for stars with [Fe/H] ≲ −1.0 and potentially a minority of the other stars. A classical bulge is expected from Λ-CDM cosmological simulations, can accentuate the properties of an existing bar in a hybrid system, and is most consistent with the bulge abundance trends such as [Mg/Fe], which are elevated relative to both the thin and thick disks. Finally, the clumpy-galaxy scenario is considered, as it is the correct description of most Milky Way precursors given observations of high-redshift galaxies. Simulations predict that these star-forming clumps will sometimes migrate to the centres of galaxies where they may form a bulge, and galaxies often include a bulge clump as well. They will possibly form a bar with properties consistent with those of the Milky Way, such as the exponential profile and metallicity gradient. Given the relative successes of these scenarios, the Milky Way bulge is plausibly of composite origin, with a classical bulge and/or inner halo numerically dominant for stars with [Fe/H] ≲ −1.0, a buckling thick disk for stars with − 1.0 ≲ [Fe/H]] ≲ -0.50 perhaps descended from the clumpy-galaxy phase, and a buckling thin disk for stars with [Fe/H] ≳ −0.50. Overlaps from these scenarios are uncertain throughout.


2016 ◽  
Vol 29 (0) ◽  
pp. 70-70
Author(s):  
T. I. Gorbaneva ◽  
T. V. Mishenina

2016 ◽  
Vol 11 (S321) ◽  
pp. 3-5
Author(s):  
Thomas Bensby

AbstractBased on observational data from the fourth internal data release of the Gaia-ESO Survey we probe the abundance structure in the Milky Way stellar disk as a function of galactocentric radius and height above the plane. We find that the inner and outer Galactic disks have different chemical signatures. The stars in the inner Galactic disk show abundance signatures of both the thin and thick disks, while the stars in the outer Galactic disk resemble in majority the abundances seen in the thin disk. Assuming that the Galactic thick disk can be associated with the α-enriched population, this can be interpreted as that the thick disk density drops drastically beyond a galactocentric radius of about 10 kpc. This is in agreement with recent findings that the thick disk has a short scale-length, shorter than that of the the thin disk.


Sign in / Sign up

Export Citation Format

Share Document