boundary representation
Recently Published Documents


TOTAL DOCUMENTS

299
(FIVE YEARS 57)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yuxin Kang ◽  
Hansheng Li ◽  
Zhuoyue Wu ◽  
Feihong Liu ◽  
Dongqing Hu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Changmo Yeo ◽  
Byung Chul Kim ◽  
Sanguk Cheon ◽  
Jinwon Lee ◽  
Duhwan Mun

AbstractRecently, studies applying deep learning technology to recognize the machining feature of three-dimensional (3D) computer-aided design (CAD) models are increasing. Since the direct utilization of boundary representation (B-rep) models as input data for neural networks in terms of data structure is difficult, B-rep models are generally converted into a voxel, mesh, or point cloud model and used as inputs for neural networks for the application of 3D models to deep learning. However, the model’s resolution decreases during the format conversion of 3D models, causing the loss of some features or difficulties in identifying areas of the converted model corresponding to a specific face of the B-rep model. To solve these problems, this study proposes a method enabling tight integration of a 3D CAD system with a deep neural network using feature descriptors as inputs to neural networks for recognizing machining features. Feature descriptor denotes an explicit representation of the main property items of a face. We constructed 2236 data to train and evaluate the deep neural network. Of these, 1430 were used for training the deep neural network, and 358 were used for validation. And 448 were used to evaluate the performance of the trained deep neural network. In addition, we conducted an experiment to recognize a total of 17 types (16 types of machining features and a non-feature) from the B-rep model, and the types for all 75 test cases were successfully recognized.


Algorithms ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 304
Author(s):  
Cristian Rendon-Cardona ◽  
Jorge Correa ◽  
Diego A. Acosta ◽  
Oscar Ruiz-Salguero

Fitting of analytic forms to point or triangle sets is central to computer-aided design, manufacturing, reverse engineering, dimensional control, etc. The existing approaches for this fitting assume an input of statistically strong point or triangle sets. In contrast, this manuscript reports the design (and industrial application) of fitting algorithms whose inputs are specifically poor triangular meshes. The analytic forms currently addressed are planes, cones, cylinders and spheres. Our algorithm also extracts the support submesh responsible for the analytic primitive. We implement spatial hashing and boundary representation for a preprocessing sequence. When the submesh supporting the analytic form holds strict C0-continuity at its border, submesh extraction is independent of fitting, and our algorithm is a real-time one. Otherwise, segmentation and fitting are codependent and our algorithm, albeit correct in the analytic form identification, cannot perform in real-time.


Author(s):  
S. Emamgholian ◽  
J. Pouliot ◽  
D. Shojaei

Abstract. The applications and understanding of Land-use Regulations (LuR) are more communicable when they are linked to the digital representation of the physical world. In order to support issuing a planning permit and move towards the establishment of automated planning permit checks, this paper investigates how LuRs related to a planning permit process can be modelled in 3D called 3D CityLuR. 3D CityLuR serves as a 3D model for representing LuRs’ legal extents on a city scale. It is formed based on multiple geometric modelling approaches representing LuRs, which can provide a better cognitive understanding of LuRs and subsequently facilitate LuR automatic checks. To this purpose, according to LuRs’ descriptions and characteristics explained in related planning documents, key parameters representing LuRs’ extent are identified (e.g. maximum distance in overlooking or maximum allowed height in building height regulations). Accordingly, to automatically model each LuR, a geometric modelling approach (e.g. Boundary Representation (B-Rep), CSG, and extrusion) that best fits with the identified key parameters is proposed. In addition, to combine 3D CityLuR with an integrated BIM-GIS environment, the level of information need in terms of geometries and semantics is specified. Finally, the paper results in a showcase for five LuRs including building height, energy efficiency protection, overshadowing open space, overlooking, and noise impacts regulations. The showcase is a proof of concept for determining how these LuRs can be modelled in 3D and combined with 3D city models based on the selected geometric modelling approaches, identified parameters, and level of information need.


Author(s):  
Yingjun Wang ◽  
Liang Gao ◽  
Jinping Qu ◽  
Zhaohui Xia ◽  
Xiaowei Deng

AbstractIn isogeometric analysis (IGA), the boundary representation of computer-aided design (CAD) and the tensor-product non-uniform rational B-spline structure make the analysis of three-dimensional (3D) problems with irregular geometries difficult. In this paper, an IGA method for complex models is presented by reconstructing analysis-suitable models. The CAD model is represented by boundary polygons or point cloud and is embedded into a regular background grid, and a model reconstruction method is proposed to obtain the level set function of the approximate model, which can be directly used in IGA. Three 3D examples are used to test the proposed method, and the results demonstrate that the proposed method can deal with complex engineering parts reconstructed by boundary polygons or point clouds.


2021 ◽  
Vol 11 (18) ◽  
pp. 8292
Author(s):  
Jumyung Um ◽  
Joungmin Park ◽  
Ian Anthony Stroud

Even though additive manufacturing is receiving increasing interest from aerospace, automotive, and shipbuilding, the legacy approach using tessellated form representation and cross-section slice algorithm still has the essential limitation of its inaccuracy of geometrical information and volumetric losses of final outputs. This paper introduces an innovative method to represent multi-material and multi-directional layers defined in boundary-representation standard model and to process complex sliced layers without missing volumes by using the proposed squashing operation. Applications of the proposed method to a bending part, an internal structure, and an industrial moulding product show the assurance of building original shape without missing volume during the comparison with the legacy method. The results show that using boundary representation and te squashing algorithm in the geometric process of additive manufacturing is expected to improve the inaccuracy that was the barrier of applying additive process to various metal industries.


Author(s):  
Xiaodong Wei ◽  
Benjamin Marussig ◽  
Pablo Antolin ◽  
Annalisa Buffa

AbstractWe present a novel isogeometric method, namely the Immersed Boundary-Conformal Method (IBCM), that features a layer of discretization conformal to the boundary while employing a simple background mesh for the remaining domain. In this manner, we leverage the geometric flexibility of the immersed boundary method with the advantages of a conformal discretization, such as intuitive control of mesh resolution around the boundary, higher accuracy per degree of freedom, automatic satisfaction of interface kinematic conditions, and the ability to strongly impose Dirichlet boundary conditions. In the proposed method, starting with a boundary representation of a geometric model, we extrude it to obtain a corresponding conformal layer. Next, a given background B-spline mesh is cut with the conformal layer, leading to two disconnected regions: an exterior region and an interior region. Depending on the problem of interest, one of the two regions is selected to be coupled with the conformal layer through Nitsche’s method. Such a construction involves Boolean operations such as difference and union, which therefore require proper stabilization to deal with arbitrarily cut elements. In this regard, we follow our precedent work called the minimal stabilization method (Antolin et al in SIAM J Sci Comput 43(1):A330–A354, 2021). In the end, we solve several 2D benchmark problems to demonstrate improved accuracy and expected convergence with IBCM. Two applications that involve complex geometries are also studied to show the potential of IBCM, including a spanner model and a fiber-reinforced composite model. Moreover, we demonstrate the effectiveness of IBCM in an application that exhibits boundary-layer phenomena.


Sign in / Sign up

Export Citation Format

Share Document