mlct state
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

2020 ◽  
Vol 117 (34) ◽  
pp. 20430-20437
Author(s):  
Ting Jiang ◽  
Yusong Bai ◽  
Peng Zhang ◽  
Qiwei Han ◽  
David B. Mitzi ◽  
...  

Exploiting earth-abundant iron-based metal complexes as high-performance photosensitizers demands long-lived electronically excited metal-to-ligand charge-transfer (MLCT) states, but these species suffer typically from femtosecond timescale charge-transfer (CT)-state quenching by low-lying nonreactive metal-centered (MC) states. Here, we engineer supermolecular Fe(II) chromophores based on the bis(tridentate-ligand)metal(II)-ethyne-(porphinato)zinc(II) conjugated framework, previously shown to give rise to highly delocalized low-lying3MLCT states for other Group VIII metal (Ru, Os) complexes. Electronic spectral, potentiometric, and ultrafast pump–probe transient dynamical data demonstrate that a combination of a strong σ-donating tridentate ligand and a (porphinato)zinc(II) moiety with low-lying π*-energy levels, sufficiently destabilize MC states and stabilize supermolecular MLCT states to realize Fe(II) complexes that express3MLCT state photophysics reminiscent of their heavy-metal analogs. The resulting Fe(II) chromophore archetype, FeNHCPZn, features a highly polarized CT state having a profoundly extended3MLCT lifetime (160 ps),3MLCT phosphorescence, and ambient environment stability. Density functional and domain-based local pair natural orbital coupled cluster [DLPNO-CCSD(T)] theory reveal triplet-state wavefunction spatial distributions consistent with electronic spectroscopic and excited-state dynamical data, further underscoring the dramatic Fe metal-to-extended ligand CT character of electronically excited FeNHCPZn. This design further prompts intense panchromatic absorptivity via redistributing high-energy absorptive oscillator strength throughout the visible spectral domain, while maintaining a substantial excited-state oxidation potential for wide-ranging photochemistry––highlighted by the ability of FeNHCPZn to photoinject charges into a SnO2/FTO electrode in a dye-sensitized solar cell (DSSC) architecture. Concepts enumerated herein afford opportunities for replacing traditional rare-metal–based emitters for solar-energy conversion and photoluminescence applications.


Inorganics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 16 ◽  
Author(s):  
Jianfang Wu ◽  
Marc Alías ◽  
Coen de Graaf

A computational study is presented in which two strategies of ligand modifications have been explored to invert the relative energy of the metal-to-ligand charge transfer (MLCT) and metal-centered (MC) state in Fe(II)-polypyridyl complexes. Replacing the bipyridines by stronger σ donors increases the ligand-field strength and pushes the MC state to higher energy, while the use of ligands with a larger π conjugation leads to lower MLCT energies.


2019 ◽  
Author(s):  
Kaili Zhang ◽  
Ryan Ash ◽  
Gregory S Girolami ◽  
Josh Vura-Weis

<p>Fe(II) coordination complexes are promising alternatives to Ru(II) and Ir(III) chromophores for photoredox chemistry and solar energy conversion, but rapid deactivation of the initial metal-to-ligand charge transfer (MLCT) state to low-lying (d,d) states limits their performance. Relaxation to a <sup>5</sup>T<sub>2g</sub> state is postulated to occur via a metal-centered triplet state, but this mechanism remains controversial. We use femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy to measure the excited-state relaxation of Fe(phen)<sub>3</sub><sup>2+</sup> and conclusively identify a <sup>3</sup>T intermediate that forms in 170 fs and decays to a vibrationally hot <sup>5</sup>T<sub>2g</sub> state in 40 fs. A coherent vibrational wavepacket with a period of 250 fs and damping time of 0.66 ps is observed on the <sup>5</sup>T<sub>2g</sub> surface, and the spectrum of this oscillation serves as a fingerprint for the Fe-N symmetric stretch. The results show that the shape of the M<sub>2,3</sub>-edge X-ray absorption near edge structure (XANES) spectrum is sensitive to the electronic structure of the metal center, and the high spin sensitivity, fast time resolution, and tabletop convenience of XUV transient absorption make it a powerful tool for studying the complex photophysics of transition metal complexes.<br></p>


2019 ◽  
Author(s):  
Kaili Zhang ◽  
Ryan Ash ◽  
Gregory S Girolami ◽  
Josh Vura-Weis

<p>Fe(II) coordination complexes are promising alternatives to Ru(II) and Ir(III) chromophores for photoredox chemistry and solar energy conversion, but rapid deactivation of the initial metal-to-ligand charge transfer (MLCT) state to low-lying (d,d) states limits their performance. Relaxation to a <sup>5</sup>T<sub>2g</sub> state is postulated to occur via a metal-centered triplet state, but this mechanism remains controversial. We use femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy to measure the excited-state relaxation of Fe(phen)<sub>3</sub><sup>2+</sup> and conclusively identify a <sup>3</sup>T intermediate that forms in 170 fs and decays to a vibrationally hot <sup>5</sup>T<sub>2g</sub> state in 40 fs. A coherent vibrational wavepacket with a period of 250 fs and damping time of 0.66 ps is observed on the <sup>5</sup>T<sub>2g</sub> surface, and the spectrum of this oscillation serves as a fingerprint for the Fe-N symmetric stretch. The results show that the shape of the M<sub>2,3</sub>-edge X-ray absorption near edge structure (XANES) spectrum is sensitive to the electronic structure of the metal center, and the high spin sensitivity, fast time resolution, and tabletop convenience of XUV transient absorption make it a powerful tool for studying the complex photophysics of transition metal complexes.<br></p>


2019 ◽  
Author(s):  
Kaili Zhang ◽  
Ryan Ash ◽  
Gregory S Girolami ◽  
Josh Vura-Weis

<p>Fe(II) coordination complexes are promising alternatives to Ru(II) and Ir(III) chromophores for photoredox chemistry and solar energy conversion, but rapid deactivation of the initial metal-to-ligand charge transfer (MLCT) state to low-lying (d,d) states limits their performance. Relaxation to a <sup>5</sup>T<sub>2g</sub> state is postulated to occur via a metal-centered triplet state, but this mechanism remains controversial. We use femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy to measure the excited-state relaxation of Fe(phen)<sub>3</sub><sup>2+</sup> and conclusively identify a <sup>3</sup>T intermediate that forms in 170 fs and decays to a vibrationally hot <sup>5</sup>T<sub>2g</sub> state in 40 fs. The shape of this M<sub>2,3</sub>-edge X-ray absorption near edge structure (XANES) spectrum is sensitive to the electronic structure of the metal center, and the high spin sensitivity, fast time resolution, and tabletop convenience of XUV transient absorption make it a powerful new tool for measuring the complex photophysics of transition metal complexes.</p>


2019 ◽  
Vol 36 (1) ◽  
pp. 242-251
Author(s):  
Karim El-Naggar ◽  
Hesham Abdel-Samad ◽  
Mohamed El-Khouly ◽  
Ayman Abdel-Shafi ◽  
Ramadan Ramadan

2019 ◽  
Vol 36 (1) ◽  
pp. 539-551
Author(s):  
Karim El-Naggar ◽  
Hesham S. Abdel-Samad ◽  
Mohamed E. El-Khouly ◽  
Ayman A. Abdel-Shafi ◽  
Karim El-Naggar

2018 ◽  
Vol 73 (5) ◽  
pp. 319-322
Author(s):  
Arnd Vogler ◽  
Michael Bodensteiner

AbstractThe binuclear complex Re(I)2(μ-4,4′-bipyridine)(8-quinolinolato)2(CO)6 has been prepared and characterized including the crystal structure. This complex shows, dependent on the conditions, three emissions, which originate from the quinolinolate IL excited state (fluorescence and phosphorescence) and from a Re(I) to 4,4′-bipyridine MLCT state (phosphorescence).


2018 ◽  
Author(s):  
Aleksej Friedrich ◽  
Olga S. Bokareva ◽  
Shu-Ping Luo ◽  
Henrik Junge ◽  
Matthias Beller ◽  
...  

<p>Homogenous photocatalytic systems based on copper photosensitizers are promising candidates for noble metal free approaches in solar hydrogen generation. To improve their performance a detailed understanding of the individual steps is needed. Here, we study the interaction of a heteroleptic copper (I) photosensitizer with an iron catalyst by time-resolved spectroscopy and ab-initio calculations. The catalyst leads to rather efficient quenching of the <sup>3</sup>MLCT state of the copper complex, with a bimolecular rate being about three times smaller than the collision rate. Using control experiments with methyl viologen an appearing absorption band is assigned to the oxidized copper complex demonstrating that electron transfer from the sensitizer to the iron catalyst occurs and the system reacts along an oxidative pathway. However, only about 30% of the quenching events result in an electron transfer while the other 70% experience deactivation indicating that the photocatalytic performance could be improved by optimizing the intermolecular interaction.</p><p><br></p>


2018 ◽  
Author(s):  
Aleksej Friedrich ◽  
Olga S. Bokareva ◽  
Shu-Ping Luo ◽  
Henrik Junge ◽  
Matthias Beller ◽  
...  

<p>Homogenous photocatalytic systems based on copper photosensitizers are promising candidates for noble metal free approaches in solar hydrogen generation. To improve their performance a detailed understanding of the individual steps is needed. Here, we study the interaction of a heteroleptic copper (I) photosensitizer with an iron catalyst by time-resolved spectroscopy and ab-initio calculations. The catalyst leads to rather efficient quenching of the <sup>3</sup>MLCT state of the copper complex, with a bimolecular rate being about three times smaller than the collision rate. Using control experiments with methyl viologen an appearing absorption band is assigned to the oxidized copper complex demonstrating that electron transfer from the sensitizer to the iron catalyst occurs and the system reacts along an oxidative pathway. However, only about 60% of the quenching events result in an electron transfer while the other 40% experience deactivation indicating that the photocatalytic performance could be improved by optimizing the intermolecular interaction.</p>


Sign in / Sign up

Export Citation Format

Share Document