jawless fish
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 2)

Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 538
Author(s):  
Carla Lima ◽  
Geonildo Rodrigo Disner ◽  
Maria Alice Pimentel Falcão ◽  
Ana Carolina Seni-Silva ◽  
Adolfo Luis Almeida Maleski ◽  
...  

Since the first record of the five founder members of the group of Natterin proteins in the venom of the medically significant fish Thalassophryne nattereri, new sequences have been identified in other species. In this work, we performed a detailed screening using available genome databases across a wide range of species to identify sequence members of the Natterin group, sequence similarities, conserved domains, and evolutionary relationships. The high-throughput tools have enabled us to dramatically expand the number of members within this group of proteins, which has a remote origin (around 400 million years ago) and is spread across Eukarya organisms, even in plants and primitive Agnathans jawless fish. Overall, the survey resulted in 331 species presenting Natterin-like proteins, mainly fish, and 859 putative genes. Besides fish, the groups with more species included in our analysis were insects and birds. The number and variety of annotations increased the knowledge of the obtained sequences in detail, such as the conserved motif AGIP in the pore-forming loop involved in the transmembrane barrel insertion, allowing us to classify them as important constituents of the innate immune defense system as effector molecules activating immune cells by interacting with conserved intracellular signaling mechanisms in the hosts.


2021 ◽  
Author(s):  
Allison K. Miller ◽  
Jonathon C.O. Mifsud ◽  
Vincenzo A. Costa ◽  
Rebecca M. Grimwood ◽  
Jane Kitson ◽  
...  

The Nidovirales comprise a genetically diverse group of positive-sense single-stranded RNA virus families that infect a range of invertebrate and vertebrate hosts. Recent metagenomic studies have identified nido-like virus sequences, particularly those related to the Coronaviridae, in a range of aquatic hosts including fish, amphibians and reptiles. We sought to identify additional members of the Coronaviridae in both bony and jawless fish through a combination of total RNA sequencing (meta-transcriptomics) and data mining of published RNA sequencing data, and from this reveal more of the long-term patterns and processes of coronavirus evolution. Accordingly, we identified a number of divergent viruses that fell within the Letovirinae subfamily of the Coronaviridae, including those in a jawless fish - the pouched lamprey. By mining fish transcriptome data we identified additional virus transcripts matching these viruses in bony fish from both marine and freshwater environments. These new viruses retained sequence conservation in the RNA-dependant RNA polymerase across the Coronaviridae, but formed a distinct and diverse phylogenetic group. Although there are broad-scale topological similarities between the phylogenies of the major groups of coronaviruses and their vertebrate hosts, the evolutionary relationships of viruses within the Letovirinae does not mirror that of their hosts. For example, the coronavirus found in the pouched lamprey fell within the phylogenetic diversity of bony fish letoviruses, indicative of past host switching events. Hence, despite possessing a phylogenetic history that likely spans the entire history of the vertebrates, coronavirus evolution has been characterised by relatively frequent cross-species transmission, particularly in hosts that reside in aquatic habitats.


2020 ◽  
Vol 117 (40) ◽  
pp. 24876-24884
Author(s):  
Lindsey Barske ◽  
Peter Fabian ◽  
Christine Hirschberger ◽  
David Jandzik ◽  
Tyler Square ◽  
...  

Whereas the gill chambers of jawless vertebrates open directly into the environment, jawed vertebrates evolved skeletal appendages that drive oxygenated water unidirectionally over the gills. A major anatomical difference between the two jawed vertebrate lineages is the presence of a single large gill cover in bony fishes versus separate covers for each gill chamber in cartilaginous fishes. Here, we find that these divergent patterns correlate with the pharyngeal arch expression of Pou3f3 orthologs. We identify a deeply conserved Pou3f3 arch enhancer present in humans through sharks but undetectable in jawless fish. Minor differences between the bony and cartilaginous fish enhancers account for their restricted versus pan-arch expression patterns. In zebrafish, mutation of Pou3f3 or the conserved enhancer disrupts gill cover formation, whereas ectopic pan-arch Pou3f3b expression generates ectopic skeletal elements resembling the multimeric covers of cartilaginous fishes. Emergence of this Pou3f3 arch enhancer >430 Mya and subsequent modifications may thus have contributed to the acquisition and diversification of gill covers and respiratory strategies during gnathostome evolution.


2020 ◽  
Author(s):  
Damilola Pinheiro ◽  
Marie-Anne Mahwin ◽  
Maria Prendecki ◽  
Kevin J Woollard

AbstractNeutrophils or heterophils constitute the largest population of phagocytic granulocytes in the blood of mammals and birds. The development and function of neutrophils and monocytes is primarily governed by the granulocyte colony-stimulating factor receptor family (CSF3R/CSF3) and macrophage colony-stimulating factor receptor family (CSF1R/IL34/CSF1) respectively. Using various techniques this study considered how the emergence of receptor:ligand pairings shaped the distribution of blood myeloid cell populations. Comparative gene analysis supported the ancestral pairings of CSF1R/IL34 and CSF3R/CSF3, and the emergence of CSF1 later in tetrapod lineages after the advent of Jawed/Jawless fish. Further analysis suggested that the emergence of CSF3 lead to reorganisation of granulocyte distribution between amphibian and early reptiles. However, the advent of endothermy likely contributed to the dominance of the neutrophil/heterophil in modern-day mammals and birds. In summary, we show that the emergence of CSF3R/CSF3 was a key factor in the subsequent evolution of the modern-day mammalian neutrophil.Impact statementColony-stimulating factors (CSFs) are important for myeloid phagocyte development. The emergence of CSF3/CSF3R in tetrapod lineages has uniquely contributed to physical, functional and structural adaptions observed in mammalian neutrophils.


2020 ◽  
Vol 223 (15) ◽  
pp. jeb216945 ◽  
Author(s):  
Tetsuto Miyashita ◽  
Pranidhi Baddam ◽  
Joanna Smeeton ◽  
A. Phil Oel ◽  
Natasha Natarajan ◽  
...  
Keyword(s):  

2019 ◽  
Vol 286 (1917) ◽  
pp. 20191596
Author(s):  
Emma Randle ◽  
Robert S. Sansom

Although modern vertebrate diversity is dominated by jawed vertebrates, early vertebrate assemblages were predominantly composed of jawless fishes. Hypotheses for this faunal shift and the Devonian decline of jawless vertebrates include predation and competitive replacement. The nature and prevalence of ecological interactions between jawed and jawless vertebrates are highly relevant to both hypotheses, but direct evidence is limited. Here, we use the occurrence and distribution of bite mark type traces in fossil jawless armoured heterostracans to infer predation interactions. A total of 41 predated specimens are recorded; their prevalence increases through time, reaching a maximum towards the end of the Devonian. The bite mark type traces significantly co-occur with jawed vertebrates, and their distribution through time is correlated with jawed vertebrate diversity patterns, particularly placoderms and sarcopterygians. Environmental and ecological turnover in the Devonian, especially relating to the nekton revolution, have been inferred as causes of the faunal shift from jawless to jawed vertebrates. Here, we provide direct evidence of escalating predation from jawed vertebrates as a potential contributing factor to the demise and extinction of ostracoderms.


2019 ◽  
Author(s):  
Lukas Weiss ◽  
Lucas D. Jungblut ◽  
Andrea G. Pozzi ◽  
Barbara S. Zielinski ◽  
Lauren A. O’Connell ◽  
...  

Individual receptor neurons in the peripheral olfactory organ extend long axons into the olfactory bulb forming synapses with projection neurons in spherical neuropil regions, called glomeruli. Generally, odor map formation and odor processing in all vertebrates is based on the assumption that receptor neuron axons exclusively connect to a single glomerulus without any axonal branching. We comparatively tested this hypothesis in multiple fish and amphibian species by applying sparse cell electroporation to trace single olfactory receptor neuron axons. Sea lamprey (jawless fish) and zebrafish (bony fish) support the unbranched axon concept, with 94% of axons terminating in single glomeruli. Contrastingly, axonal projections of the axolotl (salamander) branch extensively before entering up to six distinct glomeruli. Receptor neuron axons labeled in frog species (Pipidae, Bufonidae, Hylidae and Dendrobatidae) predominantly bifurcate before entering a glomerulus and 59% and 50% connect to multiple glomeruli in larval and post-metamorphotic animals, respectively. Independent of developmental stage, lifestyle and adaptations to specific habitats, it seems to be a common feature of amphibian olfactory receptor neuron axons to frequently bifurcate and connect to multiple glomeruli. Our study challenges the unbranched axon concept as a universal vertebrate feature and it is conceivable that also later diverging vertebrates deviate from it. We propose that this unusual wiring logic evolved around the divergence of the terrestrial tetrapod lineage from its aquatic ancestors and could be the basis of an alternative way of odor processing.Abstract Figure


2019 ◽  
Author(s):  
Tetsuto Miyashita ◽  
Pranidhi Baddam ◽  
Joanna Smeeton ◽  
Adam Phillip Oel ◽  
Natasha Natarajan ◽  
...  

The vertebrate jaw is a versatile feeding apparatus that facilitated explosive diversification. To function, it requires a joint between the upper and lower jaws, so jaw joint defects - such as osteoarthritis or even ankylosis - are often highly disruptive and difficult to study. To describe consequences of jaw-joint dysfunction, we engineered two independent null alleles of a single jaw-joint marker gene, nkx3.2, in zebrafish. These mutations caused zebrafish to become functionally jawless via fusion of the upper and lower jaw cartilages (ankylosis). Despite lacking jaw joints, nkx3.2 mutants survive to adulthood and accommodate this defect by: a) remodeling their skulls; and b) altering their behavior from suction feeding to ram feeding. As a result of remodeling, nkx3.2 mutants developed superficial similarities to the skull shapes observed in two lineages of ancient jawless vertebrates (anaspids and furcacaudiid thelodonts), including: a fixed open gape, reduced snout, and enlarged branchial region. However, no homology exists in individual skull elements between these taxa, and most of the modified elements in the mutant zebrafish occur outside known expression domains of nkx3.2. Therefore, we interpret the adult nkx3.2 phenotype not as a reversal to an ancestral state, but as convergence due to similar functional requirement of feeding without moveable jaws. This remarkable convergence strongly suggests that jaw movements themselves dramatically influence the development of jawed vertebrate skulls, which implies that functionally viable skull morphologies are finite, with or without functional jaws. Because nkx3.2 null zebrafish display prominent joint ankylosis, drastically modified skull shape, and altered feeding behaviors, these mutants provide a unique model with which to investigate mechanisms of skeletal remodeling and joint diseases.


2019 ◽  
pp. 30-36 ◽  
Author(s):  
Namita Kumari ◽  
Shubham Loat ◽  
Shallu Saini ◽  
Nitika Dhilor ◽  
Anurag Kumar ◽  
...  

The major histocompatibility complex (MHC) is an organized cluster of tightly linked genes, present in all vertebrates, playing an important role in the immune system, except the jawless fish [1]. MHC was first identified during tissue transplantation studies in mice [2] and was first known for its role in histocompatibility. Consequently, the role of MHC was discovered in immune regulation [3] and several other functions [4,5]. The important function of the MHC is to code for specialized antigen-presenting receptor glycoproteins, also called as MHC molecules. The products of these genes are involved in the induction and regulation of immune response. These molecules bind processed peptide antigens and present them to T-lymphocytes, thereby triggering immune response.


Biomimetics ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 60 ◽  
Author(s):  
Fabio Galbusera ◽  
Tito Bassani

From its first appearance in early vertebrates, the spine evolved the function of protecting the spinal cord, avoiding excessive straining during body motion. Its stiffness and strength provided the basis for the development of the axial skeleton as the mechanical support of later animals, especially those which moved to the terrestrial environment where gravity loads are not alleviated by the buoyant force of water. In tetrapods, the functions of the spine can be summarized as follows: protecting the spinal cord; supporting the weight of the body, transmitting it to the ground through the limbs; allowing the motion of the trunk, through to its flexibility; providing robust origins and insertions to the muscles of trunk and limbs. This narrative review provides a brief perspective on the development of the spine in vertebrates, first from an evolutionary, and then from an embryological point of view. The paper describes functions and the shape of the spine throughout the whole evolution of vertebrates and vertebrate embryos, from primordial jawless fish to extant animals such as birds and humans, highlighting its fundamental features such as strength, stability, and flexibility, which gives it huge potential as a basis for bio-inspired technologies.


Sign in / Sign up

Export Citation Format

Share Document